So, inthelastvideo, I introducedmystaircaseplanforexplainingspinors, whichstartswiththesimplestexplanationsatthebottomandendswiththemostcomplicatedexplanationsatthetop.
Soifanelectromagneticwaveistravelinginthe z direction, thewavecanoscillateinthe x-y planeperpendiculartothedirectionoftravel, butthewavecannotoscillateinthe z direction, paralleltothedirectionoftravel.
NowsomethingthatcanhelpusrepresentwavesisrememberingEuler's formula, whichtellsusthatwecanwrite e tothepoweroftheimaginary i timesthetaascosinethetaplus i timessinetheta.
Thisis a usefulproperty, becauseifwehave e tothe i thetaandwewanttoaddsomeanglephitoit, allwedoisjustmultiplyby e tothe i timesphi, andusethestandardexponentrulestorewritethisas a singleexponentialwiththeexponentsadded.
As I saidbefore, ifwetakethisverticallypolarizedwaveandrotateit a quarterturn, weget a horizontallypolarizedwave.
前にも言ったように、この垂直偏波の波を1/4回転させると、水平偏波になる。
Inthiscase, thewaveonlyoscillatesinthe x direction, andsothe y and z componentsofthefieldarezero.
この場合、波はx方向にのみ振動するので、場のy成分とz成分はゼロとなる。
Onceagain, thetrueelectricfieldisgivenby a cosine, butforconvenience, wecanwriteitas a complexexponential, withtheamplitudeandphasewrittenseparatelyinfront.
Anylightwavepolarizationcanbewrittenas a linearcombinationof a horizontallypolarizedwaveand a verticallypolarizedwave, eachwithcomplexnumbersinfrontdenotingtheirrespectiveamplitudesandphases.
Thisiscalleddiagonalpolarization, denotedwith a capital D.
これは対角偏光と呼ばれ、大文字のDで表記される。
Thisiswhatwewouldgetifwetook a horizontallypolarizedwaveandrotateditcounterclockwiseby 45 degrees.
水平に偏光した波を反時計回りに45度回転させるとこうなる。
Although, accordingtoPythagoras, theJonesvector H plus V hasanamplitudeofthesquarerootof 2, soweusuallydividethecomponentsbythesquarerootof 2 toforcetheamplitudeof D tobe 1.
Wecancombinetheexponentials, thenuseEuler's formula, andthentaketherealparttoseethattheelectricfieldisgivenby a cosine, and a cosinewith a phasefactorof a quartercycle, whichisreallythesamethingas a negativesign.
Ifwerepeatthisprocessfromthestart, butinsteadgivingtheverticalpolarization a phaseofnegativepiover 2, weget a helixwavethatcorkscrewsintheoppositedirection, matchingourrighthandwhentherightthumbpointsinthedirectionofwavetravel.
Sowecallthisrightcircularpolarized, denotedbycapital R.
そこで私たちはこれを右旋円偏光と呼び、大文字のRで表す。
Nowyou'llnoticeinthisvideo, I'vewrittenmytravelingwaveswith a positivetimetermand a negative z term.
このビデオで、私は進行波を正の時間項と負のz項を使って書いていることにお気づきだろう。
Sometextbooksusetheoppositesignconvention, with a positive z termand a negativetimeterm.
教科書によっては、Z項を正、時間項を負とし、逆の符号を用いるものもある。
Andas a result, theJonesvectorsforcircularlypolarizedwaveshaveoppositesignsontheSomakesureyouknowwhichsignconventionyou'reusingwhentalkingaboutcircularlypolarizedwaves.
その結果、円偏波のジョーンズ・ベクトルは、円偏波と円偏波で符号が逆になる。
Sotosummarizethisvideo, weinitiallydiscoveredtheJonesvectors h and v, whichrepresenthorizontallyandverticallypolarizedtravelingwaves.
Ifyoufeelconfused, justusethestrategy I showedearlieroftaking z equalszeroandomegaequalsone, andpluggingindifferenttimevaluestoseehowthewavemovesaroundinthexyplane.
So, inthelastvideo, I introducedmystaircaseplanforexplainingspinors, whichstartswiththesimplestexplanationsatthebottomandendswiththemostcomplicatedexplanationsatthetop.