字幕表 動画を再生する
Whoa, dude.
翻訳: Satoshi Tatsuhara 校正: Lily Yichen Shi
(Laughter)
おぉすごいな! このすごい方程式を見て いいねぇ
Check out those killer equations. Sweet.
今から18分 できる限り式を使わず
Actually, for the next 18 minutes I'm going to do the best I can
素粒子物理の美を説明します
to describe the beauty of particle physics without equations.
サンゴは 学ぶ所が多く
It turns out there's a lot we can learn from coral.
とても美しい 特異な生物です
A coral is a very beautiful and unusual animal.
サンゴの突起は 無数のポリプの集合体です
Each coral head consists of thousands of individual polyps.
ポリプは出芽と分岐を繰り返し
These polyps are continually budding and branching
同じ遺伝子をもつ複製を作ります
into genetically identical neighbors.
これを高知能なサンゴだとして
If we imagine this to be a hyperintelligent coral,
個体を一つ選んで 気になる質問をしましょう
we can single out an individual and ask him a reasonable question.
みんなと違って ちょうどその位置にいるのは
We can ask how exactly he got to be in this particular location
なぜ?
compared to his neighbors --
単なる偶然? 運命か何か?
if it was just chance, or destiny, or what?
ポリプは 温暖化に苦言を呈してから
Now, after admonishing us for turning the temperature up too high,
ばかな質問だと言うでしょう
he would tell us that our question was completely stupid.
サンゴは意地悪になるんです
These corals can be kind of mean, you see,
私もサーフィンで傷を負いました
and I have surfing scars to prove that.
ポリプは続けます
But this polyp would continue and tell us
「隣のポリプは 私の完全な複製物だ 私は
that his neighbors were quite clearly identical copies of him.
すべての場所に
That he was in all these other locations as well,
同時に存在し それぞれを体験する」
but experiencing them as separate individuals.
サンゴにとって 多くの複製に分岐することは
For a coral, branching into different copies
当然なので
is the most natural thing in the world.
人類とは違い 高知能なサンゴらしく 量子力学を
Unlike us, a hyperintelligent coral
理解します
would be uniquely prepared to understand quantum mechanics.
量子力学の数学で 宇宙の仕組みが
The mathematics of quantum mechanics
正確に表現され
very accurately describes how our universe works.
現実が多くの可能性に分岐し続けることがわかります
And it tells us our reality is continually branching into different possibilities,
まさにサンゴのようです
just like a coral.
人類がこれを理解しがたいのは
It's a weird thing for us humans to wrap our minds around,
一つの可能性しか経験しないからです
since we only ever get to experience one possibility.
量子力学の奇妙さを示したのは
This quantum weirdness was first described
シュレーディンガーの猫が最初です
by Erwin Schrödinger and his cat.
猫なら
The cat likes this version better.
こっちのほうが好きでしょう(笑)
(Laughter)
放射性物質とシュレーディンガーが 箱に入っています
In this setup, Schrödinger is in a box with a radioactive sample
量子力学の法則によれば 試料から
that, by the laws of quantum mechanics, branches into a state
放射線が出る状態と
in which it is radiated and a state in which it is not.
出ない状態に分岐します(笑)
(Laughter)
放射した方では
In the branch in which the sample radiates,
毒が放出されて シュレーディンガーは死んでいますが
it sets off a trigger that releases poison and Schrödinger is dead.
他方の現実では生きたままです
But in the other branch of reality, he remains alive.
二つの現実は 各シュレーディンガーが別々に経験します
These realities are experienced separately by each individual.
各世界に 相手の世界は存在しません
As far as either can tell, the other one doesn't exist.
人は一つの現実しか経験できず
This seems weird to us,
別の現実を見られないので
because each of us only experiences an individual existence,
奇妙に感じます
and we don't get to see other branches.
シュレーディンガーと同様 私たちはサンゴのように
It's as if each of us, like Schrödinger here,
多くの可能性に分岐します
are a kind of coral branching into different possibilities.
量子力学の数学でわかるように
The mathematics of quantum mechanics tells us
これが微小世界の仕組みです
this is how the world works at tiny scales.
一言でいうと
It can be summed up in a single sentence:
「起こりうる全てが起こる」
Everything that can happen, does.
これが量子力学です
That's quantum mechanics.
でも 全て起こるわけではありません
But this does not mean everything happens.
ほかの物理学は 起こる事と起こらない事を
The rest of physics is about describing what can happen and what can't.
示します
What physics tells us is that everything comes down to geometry
物理学が示すのは 素粒子の相互作用と幾何学に
and the interactions of elementary particles.
すべて行き着くということです
And things can happen only if these interactions are perfectly balanced.
何かが起こるのは 相互作用が完全に平衡な場合
Now I'll go ahead and describe how we know about these particles,
だけです
what they are and how this balance works.
その粒子を知る方法 その実体
In this machine, a beam of protons and antiprotons
平衡がどう作用するのか説明します
are accelerated to near the speed of light
この装置では 陽子と反陽子のビームが
and brought together in a collision, producing a burst of pure energy.
光速近くまで加速して衝突し
This energy is immediately converted into a spray of subatomic particles,
一体化して 混じりけのないエネルギーが放射されて
with detectors and computers used to figure out their properties.
原子より小さな粒子の放射に
This enormous machine --
変換され
the Large Hadron Collider at CERN in Geneva --
検出器とコンピュータで解析されます
has a circumference of 17 miles and, when it's operating,
この巨大な加速器LHCは
draws five times as much power as the city of Monterey.
ジュネーブのCERNにあり
We can't predict specifically
一周27km
what particles will be produced in any individual collision.
稼働時にはモントレー市の
Quantum mechanics tells us all possibilities are realized.
5倍の電力を消費します
But physics does tell us what particles can be produced.
衝突ごとに どの粒子が生まれるかは
These particles must have just as much mass and energy
予測できません
as is carried in by the proton and antiproton.
量子力学は すべての可能性が
Any particles more massive than this energy limit aren't produced,
実在するといい 物理学は生成可能な粒子を示します
and remain invisible to us.
生成された粒子のエネルギーは必ず
This is why this new particle accelerator is so exciting.
陽子と反陽子が運ぶエネルギーに等しく
It's going to push this energy limit seven times
このエネルギー限界を超える粒子は
beyond what's ever been done before,
生まれず 目にできません
so we're going to get to see some new particles very soon.
この新型加速器がすごいのは そこです
But before talking about what we might see,
エネルギー限界が従来より7倍
let me describe the particles we already know of.
高いのです
There's a whole zoo of subatomic particles.
新しい素粒子はすぐ見つかります
Most of us are familiar with electrons.
予測する前に
A lot of people in this room make a good living pushing them around.
既知の素粒子について説明します
(Laughter)
いわゆる「素粒子動物園」です
But the electron also has a neutral partner called the neutrino,
電子は身近ですね
with no electric charge and a very tiny mass.
みなさんは
In contrast, the up and down quarks have very large masses,
これを使って
and combine in threes to make the protons and neutrons inside atoms.
いい暮らしをしています(笑)
All of these matter particles come in left- and right-handed varieties,
電子には中性の仲間がいます
and have antiparticle partners that carry opposite charges.
無電荷で質量がとても小さいニュートリノです
These familiar particles
アップクォークとダウンクォークは 質量が膨大で
also have less familiar second and third generations,
三つで 陽子と中性子を作ります
which have the same charges as the first but have much higher masses.
物質の素粒子には
These matter particles all interact with the various force particles.
右回りと左回りがあり
The electromagnetic force interacts with electrically charged matter
逆の電荷をもった反粒子が相棒です
via particles called photons.
身近な素粒子には
There is also a very weak force
聞き慣れない第2 第3世代があります 第1世代と電荷は同じですが
called, rather unimaginatively, the weak force ...
質量ははるかに大きいものです
(Laughter)
物質の素粒子は 力の素粒子と相互作用します
that interacts only with left-handed matter.
「電磁力」は 電荷をもつ物質と相互作用します
The strong force acts between quarks
光子という素粒子が媒介します
which carry a different kind of charge, called color charge,
非常に弱い力もあります
and come in three different varieties: red, green and blue.
安直に「弱い力」と呼ばれていて
You can blame Murray Gell-Mann for these names -- they're his fault.
左回りの物質とだけ相互作用します
Finally, there's the force of gravity,
「強い力」は クォークに働きます
which interacts with matter via its mass and spin.
クオークは 色荷というチャージをもち
The most important thing to understand here
色荷には 赤 緑 青の3種があります
is that there's a different kind of charge associated with each of these forces.
この命名はマリー・ゲルマンの
These four different forces interact with matter
あやまちです
according to the corresponding charges that each particle has.
最後は「重力」です 質量とスピンを介して
A particle that hasn't been seen yet, but we're pretty sure exists,
物質と相互作用します
is the Higgs particle, which gives masses to all these other particles.
一番重要なのは 力ごとに
The main purpose of the Large Hadron Collider
別のチャージが対応する
is to see this Higgs particle, and we're almost certain it will.
ということです
But the greatest mystery is what else we might see.
4種の力は その力に対応した
And I'm going to show you one beautiful possibility
各素粒子のチャージに応じて 物質と作用します
towards the end of this talk.
未発見ながら確実に存在するのが
Now, if we count up all these different particles
ヒッグス粒子です 他の素粒子に質量を与えます
using their various spins and charges,
LHCの主目的は
there are 226.
ヒッグス粒子の発見です ほぼ確実ですが
That's a lot of particles to keep track of.
ほかに何を発見できるかが 最大の神秘です
And it seems strange
ここからは すごい可能性を一つ
that nature would have so many elementary particles.
お話しします
But if we plot them out according to their charges,
素粒子を
some beautiful patterns emerge.
スピンやチャージを考慮して数え上げると226個です
The most familiar charge is electric charge.
多いのです
Electrons have an electric charge,
自然界にそれほど多種の素粒子が
a negative one,
あるのは奇妙にも思えますが
and quarks have electric charges in thirds.
チャージに基づいて描画すると
So when two up quarks and a down quark are combined to make a proton,
美しいパターンが現れます
it has a total electric charge of plus one.
一番身近なのは電荷ですね
These particles also have antiparticles, which have opposite charges.
電子の電荷はマイナス1
Now, it turns out the electric charge
クォークの電荷は1/3の倍数
is actually a combination of two other charges:
アップクォーク二つと ダウンクォーク一つで
hypercharge and weak charge.
陽子を作ります 電荷の合計はプラス1です
If we spread out the hypercharge and weak charge
素粒子には 逆の電荷をもつ反粒子が存在します
and plot the charges of particles in this two-dimensional charge space,
電荷は
the electric charge is where these particles sit
別の二つのチャージの組み合わせです
along the vertical direction.
ハイパーチャージとウィークチャージです
The electromagnetic and weak forces interact with matter
2次元チャージ空間に
according to their hypercharge and weak charge,
ハイパーチャージとウィークチャージを展開して 各粒子のチャージをプロットすると
which make this pattern.
電荷は
This is called the unified electroweak model,
縦方向に示されます
and it was put together back in 1967.
ハイパーチャージとウィークチャージに基づいて
The reason most of us are only familiar with electric charge
電磁力と弱い力が物質と
and not both of these is because of the Higgs particle.
相互作用します
The Higgs, over here on the left, has a large mass
これは
and breaks the symmetry of this electroweak pattern.
1967年に統一された電弱統一モデルです
It makes the weak force very weak by giving the weak particles a large mass.
身近なのは電荷だけで
Since this massive Higgs sits along the horizontal direction in this diagram,
両方ではないのは ヒッグス粒子が原因です
the photons of electromagnetism remain massless
左側にあるヒッグスは質量が大きくて
and interact with electric charge along the vertical direction
電弱パターンの対称性を破ります
in this charge space.
弱い素粒子の
So the electromagnetic and weak forces
質量を大きくし 弱い力を弱めます
are described by this pattern of particle charges
大質量のヒッグスが図の横方向に位置しているので
in two-dimensional space.
電磁力を担う光子は質量をもたずに チャージ空間の縦方向で
We can include the strong force by spreading out its two charge directions
電荷と相互作用を
and plotting the charges of the force particles in quarks
します
along these directions.
電磁力と弱い力は 2次元空間で
The charges of all known particles
素粒子のチャージのパターンとして示されます
can be plotted in a four-dimensional charge space,
強い力を2チャージ方向に展開して
and projected down to two dimensions like this so we can see them.
クォークに働く力の素粒子のチャージを描くと
Whenever particles interact, nature keeps things in a perfect balance
強い力を導入することができます
along all four of these charge directions.
既知のすべての素粒子の
If a particle and an antiparticle collide,
チャージを 4次元チャージ空間に描画して
it creates a burst of energy and a total charge of zero
2次元に投影できます
in all four charge directions.
素粒子が相互作用するとき 4チャージ方向で
At this point, anything can be created
完全に平衡が保たれます
as long as it has the same energy and maintains a total charge of zero.
粒子と反粒子が衝突すると エネルギーが放出されて
For example, this weak force particle and its antiparticle
全4チャージ方向でチャージの和がゼロになります
can be created in a collision.
エネルギーが同じで チャージの和がゼロであれば
In further interactions, the charges must always balance.
何でも作れます
One of the weak particles could decay into an electron and an antineutrino,
例えば この弱い力の粒子と反粒子は
and these three still add to zero total charge.
衝突で生まれます
Nature always keeps a perfect balance.
さらに相互作用しても チャージは常に平衡します
So these patterns of charges are not just pretty.
弱い力は 電子と反電子ニュートリノに
They tell us what interactions are allowed to happen.
崩壊しますが
And we can rotate this charge space in four dimensions
三つのチャージの和はゼロのままです
to get a better look at the strong interaction,
いつも完全に平衡が保たれます
which has this nice hexagonal symmetry.
チャージパターンは綺麗なだけでなく
In a strong interaction, a strong force particle,
どんな相互作用が発生し得るかを読み取れます
such as this one,
4次元でこのチャージ空間を回転させれば
interacts with a colored quark, such as this green one,
強い相互作用を見られます
to give a quark with a different color charge -- this red one.
六角形状に対称です
And strong interactions are happening millions of times
強い相互作用では 例えばこの強い力の素粒子が
each second in every atom of our bodies,
例えばこの緑のカラークォークと相互作用して
holding the atomic nuclei together.
別の色荷をもつ この赤いクォークとなります
But these four charges corresponding to three forces
体中の原子では 毎秒
are not the end of the story.
強い相互作用が 無数に発生して
We can also include two more charges corresponding to the gravitational force.
原子核を一体に保っています
When we include these,
3種の力に対応した4種のチャージだけでは
each matter particle has two different spin charges,
終わりません
spin-up and spin-down.
重力に対応した
So they all split and give a nice pattern in six-dimensional charge space.
2チャージも導入できます
We can rotate this pattern in six dimensions
このとき 物質の素粒子は それぞれ
and see that it's quite pretty.
上下二つのスピンチャージをもちます
Right now, this pattern matches our best current knowledge
6次元チャージ空間にすべて分かれて
of how nature is built at the tiny scales of these elementary particles.
きれいなパターンを描きます
This is what we know for certain.
6次元でパターンを回転させると
Some of these particles are at the very limit
かなり綺麗になります
of what we've been able to reach with experiments.
素粒子レベルの微小スケールで自然の仕組みを示す最有力の思想と
From this pattern
これが一致
we already know the particle physics of these tiny scales --
しています
the way the universe works at these tiny scales is very beautiful.
確かに一致しています
But now I'm going to discuss some new and old ideas
いくつかの素粒子で
about things we don't know yet.
すでに装置限界に達しています
We want to expand this pattern using mathematics alone,
微小スケールでの素粒子物理は
and see if we can get our hands on the whole enchilada.
このパターンから明らかとなりました
We want to find all the particles and forces
微小スケールの宇宙の仕組みは とても美しいのです
that make a complete picture of our universe.
未知の世界について 新旧交えて
And we want to use this picture to predict new particles
お話しします
that we'll see when experiments reach higher energies.
数学だけを使い パターンを拡張して
So there's an old idea in particle physics
全体像をつかめるか試します
that this known pattern of charges,
宇宙を完璧に描く 素粒子と力を
which is not very symmetric,
すべて見つけたいのです
could emerge from a more perfect pattern that gets broken --
もっと高エネルギーの実験で見つかる
similar to how the Higgs particle breaks the electroweak pattern
新しい素粒子を予測したいのです
to give electromagnetism.
素粒子物理学には昔から
In order to do this, we need to introduce new forces
対称性に欠ける この既知のチャージパターンは
with new charge directions.
完璧なパターンが崩壊して生まれたという考えがあります
When we introduce a new direction,
ヒッグス粒子が電弱パターンを破って
we get to guess what charges the particles have along this direction,
電磁力を生むのと
and then we can rotate it in with the others.
似ています そのためには 新しい力とチャージ方向を
If we guess wisely, we can construct the standard charges
導入する必要があります
in six charge dimensions as a broken symmetry
新しいチャージ方向を導入すれば
of this more perfect pattern in seven charge dimensions.
素粒子のチャージが明らかになり ほかと一緒に
This particular choice corresponds to a grand unified theory
回転可能になります
introduced by Pati and Salam in 1973.
上手くやれば6チャージ次元の標準的なチャージが
When we look at this new unified pattern,
もっと綺麗な7チャージ次元パターンの対称性を
we can see a couple of gaps where particles seem to be missing.
破った形だといえることになります
This is the way theories of unification work.
この選択は 1973年にパティとサラムが提唱した
A physicist looks for larger, more symmetric patterns
大統一理論に対応するものです
that include the established pattern as a subset.
この新たな統一パターンを見ると
The larger pattern allows us to predict the existence of particles
素粒子が欠けたような穴が二つあります
that have never been seen.
統一理論がうまくいった例です
This unification model predicts the existence
実証済みのパターンを内包した
of these two new force particles,
大きくて対称的なパターンを探すのが物理学者です
which should act a lot like the weak force, only weaker.
大きなパターンから 未知の素粒子の
Now, we can rotate this set of charges in seven dimensions
存在を予測できます
and consider an odd fact about the matter particles:
この統一モデルから 弱い力によく似た
the second and third generations of matter
新しい力の素粒子を二つ予測できます
have exactly the same charges in six-dimensional charge space
弱い方だけです
as the first generation.
7次元でチャージ群を回転させると
These particles are not uniquely identified by their six charges.
物質の素粒子について奇妙な事実が浮かびます
They sit on top of one another in the standard charge space.
物質の素粒子を 6次元チャージ空間で見ると
However, if we work in eight-dimensional charge space,
第2 第3世代のチャージが 第1世代と
then we can assign unique new charges to each particle.
全く同じなのです
Then we can spin these in eight dimensions
6チャージでは区別できずに
and see what the whole pattern looks like.
標準のチャージ空間で重なっています
Here we can see the second and third generations of matter now,
ところが8次元チャージ空間で考えると
related to the first generation by a symmetry called "triality."
各素粒子に固有のチャージを新しく割り当てられます
This particular pattern of charges in eight dimensions
8次元で回転させて
is actually part of the most beautiful geometric structure in mathematics.
パターンの全貌を見てみましょう
It's a pattern of the largest exceptional Lie group, E8.
物質の第2 第3世代が
This Lie group is a smooth, curved shape with 248 dimensions.
「三重性」という対称性で 第1世代に結びついています
Each point in this pattern corresponds to a symmetry
8次元で示された 特有のチャージパターンは
of this very complex and beautiful shape.
数学的に最も美しい幾何学模様の一種です
One small part of this E8 shape can be used to describe
最大の例外型リー群E8のパターンです
the curved space-time of Einstein's general relativity,
このリー群は 248次元の滑らかな曲線を描きます
explaining gravity.
そのパターンの各点が この複雑で美しい形状と
Together with quantum mechanics,
同じ対称性をもつのです
the geometry of this shape could describe everything
E8形状の一部に重力を説明した
about how the universe works at the tiniest scales.
アインシュタインの一般相対性理論でいう時空の歪みが
The pattern of this shape living in eight-dimensional charge space
示されています
is exquisitely beautiful,
量子力学を組み合わせると この幾何学形状から
and it summarizes thousands of possible interactions
微小スケールでの宇宙の仕組みを
between these elementary particles,
全て説明できます
each of which is just a facet of this complicated shape.
8次元チャージ空間に存在するこのパターンは
As we spin it, we can see many of the other intricate patterns
比類のない美しさです
contained in this one.
素粒子間に生じ得る相互作用が
And with a particular rotation,
無数に集約されていて それぞれが
we can look down through this pattern in eight dimensions along a symmetry axis
複雑な形状の一面を構成しています
and see all the particles at once.
回転させると 複雑なパターンが
It's a very beautiful object,
数多く現れます
and as with any unification,
ある特定の回転を加えると
we can see some holes where new particles are required by this pattern.
対称軸に沿って8次元パターンを見下ろして
There are 20 gaps where new particles should be,
素粒子を一望できます
two of which have been filled by the Pati-Salam particles.
非常に美しく どの統一モデルにも見られるように
From their location in this pattern, we know that these new particles
新たな素粒子の入るべき空所が
should be scalar fields like the Higgs particle,
見てとれます
but have color charge and interact with the strong force.
ここには20ヶ所あります
Filling in these new particles completes this pattern,
2ヶ所はパティとサラムの粒子です
giving us the full E8.
位置からすると 新しい素粒子は
This E8 pattern has very deep mathematical roots.
ヒッグス粒子のようなスカラー場のはずですが
It's considered by many to be the most beautiful structure in mathematics.
色荷を持って 強い力と作用します
It's a fantastic prospect that this object of great mathematical beauty
新たな素粒子で埋まれば
could describe the truth of particle interactions
完全なE8が出来上がります
at the smallest scales imaginable.
このE8パターンは非常に深い数学的根拠に基づいています
And this idea that nature is described by mathematics is not at all new.
数学的に最も美しい構造になると 多くの人が
In 1623, Galileo wrote this:
感じています
"Nature's grand book, which stands continually open to our gaze,
数学的にも見事なこの模様が
is written in the language of mathematics.
微小スケールでの素粒子の相互作用を示すという展望は
Its characters are triangles, circles and other geometrical figures,
素晴らしいと思います
without which it is humanly impossible to understand a single word of it;
数学が自然を説明するという思想は
without these, one is wandering around in a dark labyrinth."
決して新しいものではなく
I believe this to be true,
1623年 ガリレオは言いました
and I've tried to follow Galileo's guidance
「自然の崇高な規範は 常に観察を受け入れ
in describing the mathematics of particle physics
数学的表現で記述できる
using only triangles, circles and other geometrical figures.
その要素は 三角や円などの幾何学形状である
Of course, when other physicists and I actually work on this stuff,
さもなくば人間の理解は
the mathematics can resemble a dark labyrinth.
全く及ばず
But it's reassuring that at the heart of this mathematics
暗い迷宮をさまようことになる」
is pure, beautiful geometry.
これを信じてガリレオに従い
Joined with quantum mechanics,
三角や円などの幾何学形状だけで
this mathematics describes our universe as a growing E8 coral,
素粒子物理の数学を表現することに
with particles interacting at every location in all possible ways
挑みました
according to a beautiful pattern.
ほかの物理学者と取り組む中で
And as more of the pattern comes into view using new machines
この数学は 暗い迷宮にも思えましたが
like the Large Hadron Collider,
本質に触れると 純粋で美しい幾何学だと
we may be able to see whether nature uses this E8 pattern or a different one.
再認識させられました
This process of discovery is a wonderful adventure to be involved in.
量子力学を併用すると
If the LHC finds particles that fit this E8 pattern,
美しいパターンに基づいて
that will be very, very cool.
あらゆる可能性のもと各所で素粒子が相互作用する 成長するE8サンゴとして
If the LHC finds new particles, but they don't fit this pattern --
宇宙を説明できます
well, that will be very interesting, but bad for this E8 theory.
LHCのような新しい装置で
And, of course, bad for me personally.
もっとパターンが見えてくれば
(Laughter)
自然がE8パターンに従うのか そうでないのか 明らかになります
Now, how bad would that be?
この探索は 素晴らしい冒険です
Well, pretty bad.
LHCで E8パターンに合う素粒子が見つかれば
(Laughter)
やったぜと思うでしょうが
But predicting how nature works is a very risky game.
パターンから外れる新しい素粒子が見つかれば
This theory and others like it are long shots.
かなり興味は引かれますが E8理論的には困ります
One does a lot of hard work knowing that most of these ideas
個人的には困るのです
probably won't end up being true about nature.
(笑)
That's what doing theoretical physics is like:
どれくらい?
there are a lot of wipeouts.
かなり最悪!
In this regard, new physics theories are a lot like start-up companies.
(笑)
As with any large investment,
自然の仕組みを予測するゲームは
it can be emotionally difficult to abandon a line of research
リスクが大きく この理論も ほかの理論も 博打です
when it isn't working out.
たいていは失敗に終わるとわかりつつ
But in science, if something isn't working,
熱中します
you have to toss it out and try something else.
理論物理は
Now, the only way to maintain sanity
失敗ばかりです
and achieve happiness in the midst of this uncertainty
新しい物理理論は新興企業にそっくりです
is to keep balance and perspective in life.
大きな投資をして 失敗したとき
I've tried the best I can to live a balanced life.
研究をやめるのはつらいですね
(Laughter)
でも 科学では ダメなら
I try to balance my life equally between physics, love and surfing --
切り替えが必要
my own three charge directions.
不安になりつつ 正気を保って幸せをつかむには
(Laughter)
生活バランスと展望の維持こそ
This way, even if the physics I work on comes to nothing,
唯一の解決策です
I still know I've lived a good life.
私は生活のバランスを維持しようと
And I try to live in beautiful places.
ベストを尽くしてきました(笑)
For most of the past ten years I've lived on the island of Maui,
「物理」「愛」「サーフィーン」のバランスを保っています
a very beautiful place.
私の3チャージ方向です
Now, it's one of the greatest mysteries in the universe to my parents
(笑)
how I managed to survive all that time
だから 物理で成果が出なくても
without engaging in anything resembling full-time employment.
いい人生だったと思えます
(Laughter)
美しい場所に住むようにしていて
I'm going to let you in on that secret.
この10年はほとんど マウイ島で過ごしています
This was a view from my home office on Maui.
本当に美しい所です
And this is another,
私の親にとって 宇宙で最大の謎は
and another.
就職もせずに その間 どうやって
And you may have noticed that these beautiful views are similar,
生き延びたのかということです
but in slightly different places.
(笑)
That's because this used to be my home and office on Maui.
秘密を明かします
(Laughter)
これは
I've chosen a very unusual life.
マウイの仕事部屋から見た景色です
But not worrying about rent
美しい眺めは どれも似ていますが
allowed me to spend my time doing what I love.
場所が少し違っています
Living a nomadic existence has been hard at times,
マウイでは これが家であり職場だったからです
but it's allowed me to live in beautiful places
(笑)
and keep a balance in my life that I've been happy with.
異色の生活でしたが
It allows me to spend a lot of my time hanging out with hyperintelligent coral.
家賃なしの生活で 時間を自由に
But I also greatly enjoy the company of hyperintelligent people.
使えました
So I'm very happy to have been invited here to TED.
放浪生活は大変な時もありましたが
Thank you very much.
美しい場所で生活できました
(Applause)
幸せな生活でバランスを保てました
Chris Anderson: Stay here one second.
高知能なサンゴと
(Applause)
よく遊んだりもしました
I probably understood two percent of that,
知能の高い人にも会えてうれしいです
but I still absolutely loved it.
今日 ここに招待いただいて光栄です
So I'm going to sound dumb.
ありがとうございました
Your theory of everything --
(拍手)
Garrett Lisi: I'm used to coral.
(クリス)
CA: That's right.
理解できたのは2%だけど良かったよ くだらない質問だと思うかもしれないけど
The reason it's got a few people at least excited
あなたのいう万物の理論は
is because, if you're right, it brings gravity and quantum theory together.
(ギャレット)サンゴだよ
So are you saying that we should think of the universe, at its heart --
(クリス)それが興味を引くのは
that the smallest things that there are,
あなたが正しければ 重力と量子論が
are somehow an E8 object of possibility?
一体化されるからですけど
I mean, is there a scale to it, at the smallest scale, or ...?
宇宙の本質には
GL: Well, right now the pattern I showed you
最小のもの ―
that corresponds to what we know about elementary particle physics --
可能性を示すE8的なものがあると考えるべきでしょうか?
that already corresponds to a very beautiful shape.
つまり 最小スケールで測るものを
And that's the one that I said we knew for certain.
想定しているとか?
And that shape has remarkable similarities --
(ギャレット)私がお見せした
and the way it fits into this E8 pattern, which could be the rest of the picture.
素粒子物理学の通説に対応したパターンは
And these patterns of points that I've shown for you
すでに とても綺麗な形状をしています
actually represent symmetries of this high-dimensional object
確実な部分です
that would be warping and moving and dancing
かなりの類似点のあるその形状を
over the space-time that we experience.
E8パターンにどう当てはめるかが後の説明です
And that would be what explains all these elementary particles that we see.
点でできたあのパターンは
CA: But a string theorist, as I understand it,
この高次元のモデルの対称性をよく表しています
explains electrons in terms of much smaller strings vibrating --
このモデルは 私たちの体験する時空を超えて 歪んだり
I know, you don't like string theory -- vibrating inside it.
動いたり跳ねたりします
How should we think of an electron in relation to E8?
これが 全ての素粒子を
GL: Well, it would be one of the symmetries of this E8 shape.
説明してくれます
So what's happening is, as the shape is moving over space-time, it's twisting.
(クリス)私の理解では弦理論家は電子を
And the direction it's twisting as it moves is what particle we see.
振動する微小な弦で説明します
So it would be --
弦理論は
CA: The size of the E8 shape, how does that relate to the electron?
嫌いでしょうけど
I feel like I need that for my picture. Is it bigger? Is it smaller?
E8との関連では 電子をどうとらえればいいのですか?
GL: As far as we know, electrons are point particles,
(ギャレット)E8形状の対称性の一つです
so this would be going down to the smallest possible scales.
その形状が時空を超えて動くときに
So the way these things are explained in quantum field theory is,
ねじれが生じます その移動に伴うねじれ方向で
all possibilities are expanding and developing at once.
どの素粒子か決まります
And this is why I use the analogy to coral.
(クリス)E8形状の大きさは 電子と
And --
どう関係する?
in this way, the way that E8 comes in
理解するには それが必要なんです
is it will be as a shape that's attached at each point in the space-time.
大きい?小さい?
And, as I said, the way the shape twists --
(ギャレット)知る限りでは
the directional along which way the shape is twisting
電子は点ですから 最小ということになります
as it moves over this curved surface --
場の量子論で説明すると
is what the elementary particles are, themselves.
全ての可能性が同時に拡張し進展しているということになります
So through quantum field theory,
だからサンゴに例えるのです
they manifest themselves as points and interact that way.
E8を適用する場合には
I don't know if I'll be able to make this any clearer.
それは時空の各点に結びついた形状となります
(Laughter)
屈曲した表面を動きながら
CA: It doesn't really matter.
その形状のねじれる方向が
It's evoking a kind of sense of wonder,
どの素粒子かを
and I certainly want to understand more of this.
決めるのです
But thank you so much for coming. That was absolutely fascinating.
場の量子論では 点として表現されて そのように
(Applause)
相互作用します