looselyspeaking, a fieldis a setofelementswhereyoucanfreelyadd, subtract, multiplyanddivideandwheretheusualrulesofarithmeticapply, sinceattractionisthesameasaddingandnegativeanddividingasthesameismultiplyingbyreciprocalSze, you'lloftenhearthedefinitionof a fieldasbeing a setofelementswithtwooperations, additionandmultiplication, andthatbothoperationsareconnectedbythedistributiveproperty.
Alltheelementsformercommutedofgroupunderaddition, andifyouthrowoutzero, theremainingelementsform a communitygroupundermultiplication.
Thisisthemoreformaldefinition.
Let's nowlookatsomeexamplesoffields.
Theointegersarenot a field.
Wedenotetheintegersby a doublestroke C, alsoknownas a blackboard.
Bold.
See, wehavetwooperations, additionandmultiplication.
Thedistributivepropertyholds, andunderaddition, theintegersevenform a commutedofgroup, alsoknownasan a 1,000,000,000 group.
Butwerunintotroublewhenwelookatmultiplication.
Theintegersdon't haveinversesundermultiplication.
Themultiplicationofinverseoftwois 1/2 and 1/2 isnotaninteger.
Andwhilewefocustodayoninfinitefields, thereevenfieldwithonly a finitenumberofelementsthesaircalledfinitefields, andwe'lltalkaboutthosein a separatevideo.
looselyspeaking, a fieldis a setofelementswhereyoucanfreelyadd, subtract, multiplyanddivideandwheretheusualrulesofarithmeticapply, sinceattractionisthesameasaddingandnegativeanddividingasthesameismultiplyingbyreciprocalSze, you'lloftenhearthedefinitionof a fieldasbeing a setofelementswithtwooperations, additionandmultiplication, andthatbothoperationsareconnectedbythedistributiveproperty.