字幕表 動画を再生する
As any current or past geometry student knows,
the father of geometry was Euclid,
a Greek mathematician who lived in Alexandria, Egypt
around 300 B.C.E.
Euclid is known as the author
of a singularly influential work known as Elements.
You think your math book is long?
Euclid's Elements is 13 volumes filled of just geometry.
In Elements, Euclid structured and supplemented
the work of many mathematicians that came before him,
such as Pythagoras,
Eudoxus,
Hippocrates,
and others.
Euclid laid it all out as a logical system of proof
built up from a set of definitions,
common notions,
and his five famous postulates.
Four of these postulates are very simple and straightforward,
two points determine a line, for example.
The fifth one, however, is the seed that grows our story.
This fifth mysterious postulate is known
simply as the "Parallel Postulate".
You see, unlike the first four,
the fifth postulate is worded in a very convoluted way.
Euclid's version states that,
"If a line falls on two other lines
so that the measure of the two interior angles
on the same side of the transversal
add up to less than two right angles,
then the lines eventually intersect on that side,
and therefore are not parallel."
Wow, that is a mouthful!
Here's the simpler, more familiar version:
"In a plane, through any point not on a given line,
only one new line can be drawn
that's parallel to the original one."
Many mathematicians over the centuries
tried to prove the parallel postulate from the other four,
but weren't able to do so.
In the process, they began looking
at what would happen logically
if the fifth postulate were actually not true.
Some of the greatest minds
in the history of mathematics ask this question,
people like Ibn al-Haytham,
Omar Khayyam,
Nasir al-Din al-Tusi,
Giovanni Saccheri,
Janos Bolyai,
Carl Gauss,
and Nikolai Lobachevsky.
They all experimented with negating the Parallel Postulate,
only to discover that this gave rise
to entire alternative geometries.
These geometries became collectively known
as Non-Euclidean Geometries.
Well, we'll leave the details
of these different geometries for another lesson,
the main difference depends on the curvature
of the surface upon which the lines are constructed.
Turns out that Euclid did not tell us
the entire story in Elements;
he merely described one possible way
to look at the universe.
It all depends on the context of what you're looking at.
Flat surfaces behave one way,
while positively and negatively curved surfaces
display very different characteristics.
At first these alternative geometries seemed a bit strange
but were soon found to be equally adept
at describing the world around us.
Navigating our planet requires elliptical geometry
while the much of the art of M.C. Escher
displays hyperbolic geometry.
Albert Einstein used non-Euclidean geometry as well
to describe the way that space time
becomes work in the presence of matter
as part of his General Theory of Relativity.
The big mystery here is whether or not Euclid
had any inkling of the existence of these different geometries
when he wrote his mysterious postulate.
We may never know the answer to this question,
but it seem hard to believe
that he had no idea whatsoever of their nature,
being the great intellect that he was
and understanding the field as thoroughly as he did.
Maybe he did know
and intentionally wrote the Parallel Postulate in such a way
as to leave curious minds after him
to flush out the details.
If so, he's probably quite pleased.
These discoveries could never have been made
without gifted, progressive thinkers
who are able to suspend their preconceived notions
and think outside of what they have been taught.
We, too, must be willing at times
to put aside our preconceived notions and physical experiences
and look at the larger picture,
or we risk not seeing the rest of the story.