Placeholder Image

字幕表 動画を再生する

  • So let me with start with Roy Amara.

    翻訳: Tomoyuki Suzuki 校正: Masako Kigami

  • Roy's argument is that most new technologies tend to be overestimated

    ロイ・アマラの話から始めましょう

  • in their impact to begin with,

    彼の説によると 新技術が及ぼす影響は

  • and then they get underestimated in the long term

    多くの場合 当初は過大評価されがちですが

  • because we get used to them.

    長い目で見ると 使い慣れるために

  • These really are days of miracle and wonder.

    過小評価されるというものです

  • You remember that wonderful song by Paul Simon?

    まさに「奇跡と驚異の時代」です

  • There were two lines in it.

    ポール・サイモンの素晴らしい歌を 覚えていますか?

  • So what was it that was considered miraculous back then?

    その中に この歌詞がありました

  • Slowing down things -- slow motion --

    当時 奇跡だと思われていたものは 何だったのでしょう?

  • and the long-distance call.

    スピードを落とす 「 スロー・モーション」

  • Because, of course, you used to get interrupted by operators

    それと長距離電話

  • who'd tell you, "Long distance calling. Do you want to hang up?"

    もちろん 交換手が こう遮ったものです

  • And now we think nothing of calling all over the world.

    「これは長距離電話になりますが お切りになりますか?」

  • Well, something similar may be happening

    今なら 世界中 どこに電話を掛けても 気にしません

  • with reading and programming life.

    同様なことが 生命を解読し

  • But before I unpack that,

    プログラムすることに 起きています

  • let's just talk about telescopes.

    詳しく説明する前に

  • Telescopes were overestimated originally in their impact.

    望遠鏡について少しお話ししましょう

  • This is one of Galileo's early models.

    当初 望遠鏡がもたらす影響は 過大視されていました

  • People thought it was just going to ruin all religion.

    これはガリレオによる 初期モデルの1つですが

  • (Laughter)

    宗教を完全に破滅させてしまうと 人々は考えました

  • So we're not paying that much attention to telescopes.

    (笑)

  • But, of course, telescopes launched 10 years ago, as you just heard,

    今では 望遠鏡について そんな心配はしませんが

  • could take this Volkswagen, fly it to the moon,

    先ほどのトークで説明があった 10年前に打ち上げられた宇宙望遠鏡は

  • and you could see the lights on that Volkswagen light up on the moon.

    もしフォルクスワーゲンを 月まで運んだら

  • And that's the kind of resolution power that allowed you to see

    月面で照らした車のライトを 見わける能力があります

  • little specks of dust floating around distant suns.

    その解像度といえば 遠く離れた恒星の周りを漂う―

  • Imagine for a second that this was a sun a billion light years away,

    塵のような小さな点(惑星)を 見ることすら可能です

  • and you had a little speck of dust that came in front of it.

    ちょっと想像してみて下さい 何十光年も離れたところに恒星があって

  • That's what detecting an exoplanet is like.

    塵のような小さな点が 近づいているとします

  • And the cool thing is, the telescopes that are now being launched

    系外惑星を見つけるというのは こういうことなんです

  • would allow you to see a single candle lit on the moon.

    何と これから打ち上げられる 宇宙望遠鏡は

  • And if you separated it by one plate,

    月に立てた1本のロウソクすら 見分けられます

  • you could see two candles separately at that distance.

    しかも 板1枚で隔てさえすれば

  • And that's the kind of resolution that you need

    こんな遠くからでも 2本のろうそくを区別できます

  • to begin to image that little speck of dust

    それくらいの解像度が

  • as it comes around the sun

    恒星の周りを回る 塵のような小さな点の

  • and see if it has a blue-green signature.

    画像を捉え

  • And if it does have a blue-green signature,

    特徴的な青緑色の有無を 調べるには必要です

  • it means that life is common in the universe.

    特徴的な青緑色があれば

  • The first time you ever see a blue-green signature on a distant planet,

    生命は宇宙に普遍的に 存在していることになります

  • it means there's photosynthesis there,

    もし 特徴的な青緑色を遠方にある 惑星に1つ発見したならば

  • there's water there,

    そこで光合成が行われており

  • and the chances that you saw the only other planet with photosynthesis

    水が存在することを示す上に

  • are about zero.

    そこが地球外で光合成が行われている 唯一の惑星である可能性は

  • And that's a calendar-changing event.

    ほぼゼロということを意味します

  • There's a before and after we were alone in the universe:

    これは歴史を塗り替える出来事です

  • forget about the discovery of whatever continent.

    「宇宙には我々しかいないのか」 という問題の転換点です

  • So as you're thinking about this,

    新大陸の発見など 比べものになりません

  • we're now beginning to be able to image most of the universe.

    こんな思考をしている最中にも

  • And that is a time of miracle and wonder.

    人類は今や 宇宙の大部分の画像を 撮影し始めています

  • And we kind of take that for granted.

    これが「奇跡と驚異の時代」です

  • Something similar is happening in life.

    それを当たり前のように 思っています

  • So we're hearing about life in these little bits and pieces.

    生命にも 同じようなことが起きています

  • We hear about CRISPR, and we hear about this technology,

    生命に関する 様々な技術を 耳にします

  • and we hear about this technology.

    CRISPRをはじめ あんな技術や

  • But the bottom line on life is that life turns out to be code.

    こんな技術

  • And life as code is a really important concept because it means,

    でも結局のところ 生命はプログラムなのです

  • just in the same way as you can write a sentence

    生命をプログラムと捉えることは 本当に重要な考え方で

  • in English or in French or Chinese,

    英語やフランス語や中国語で 文を書くのと まったく同じことが

  • just in the same way as you can copy a sentence,

    英語やフランス語や中国語で 文を書くのと まったく同じことが

  • just in the same way as you can edit a sentence,

    文をコピーするのと まったく同じことが

  • just in the same way as you can print a sentence,

    そして文を編集したり

  • you're beginning to be able to do that with life.

    印刷するのと まったく同じことが

  • It means that we're beginning to learn how to read this language.

    生命に対しても 可能になってきたことを意味します

  • And this, of course, is the language that is used by this orange.

    生命という言語の読み方が 分かりつつあるということです

  • So how does this orange execute code?

    もちろん このオレンジだって そんな言語を用いています

  • It doesn't do it in ones and zeroes like a computer does.

    ではプログラムを どう実行しているのか?

  • It sits on a tree, and one day it does:

    コンピュータのように 0と1では書かれてはいません

  • plop!

    木にオレンジがなり そして ある日

  • And that means: execute.

    落っこちます

  • AATCAAG: make me a little root.

    これがプログラムの実行です

  • TCGACC: make me a little stem.

    AATCAAG 「根を生やせ」

  • GAC: make me some leaves. AGC: make me some flowers.

    TCGACC「小さな幹を作れ」

  • And then GCAA: make me some more oranges.

    GAC「葉をつけろ」 AGC「花を咲かせろ」

  • If I edit a sentence in English on a word processor,

    そして GCAA「もっと実をならせろ」

  • then what happens is you can go from this word to that word.

    ワープロで英文を編集すれば

  • If I edit something in this orange

    単語を別の単語に 変えることができます

  • and put in GCAAC, using CRISPR or something else that you've heard of,

    オレンジに編集を施し

  • then this orange becomes a lemon,

    CRISPRか 何か別の技術で GCAACを挿入したら

  • or it becomes a grapefruit,

    オレンジがレモンになったり

  • or it becomes a tangerine.

    グレープフルーツになったり

  • And if I edit one in a thousand letters,

    ミカンになったりします

  • you become the person sitting next to you today.

    千文字からなる 文字列の1文字を編集すると

  • Be more careful where you sit.

    あなたは 今 隣に座っている人に変身します

  • (Laughter)

    座る場所にはもっと気を付けて下さい

  • What's happening on this stuff is it was really expensive to begin with.

    (笑)

  • It was like long-distance calls.

    このような編集は 当初はとても費用がかかりました

  • But the cost of this is dropping 50 percent faster than Moore's law.

    長距離電話が そうだったように

  • The first $200 full genome was announced yesterday by Veritas.

    しかし 費用はムーアの法則よりも 50%速く低下しています

  • And so as you're looking at these systems,

    昨日 Veritas社は200ドルで(ヒトの) 全ゲノム解析を提供すると発表しました

  • it doesn't matter, it doesn't matter, it doesn't matter, and then it does.

    だから このような 技術の進歩を見ていると

  • So let me just give you the map view of this stuff.

    問題ない 問題ない と思っていたものが 重要になってくるのです

  • This is a big discovery.

    ゲノムの全体図をお見せしましょう

  • There's 23 chromosomes.

    これは偉大な発見です

  • Cool.

    ここには23対の染色体があります

  • Let's now start using a telescope version, but instead of using a telescope,

    見事です

  • let's use a microscope to zoom in

    次に望遠鏡モードで見てみましょう といっても 望遠鏡ではなく

  • on the inferior of those chromosomes,

    顕微鏡で覗きます

  • which is the Y chromosome.

    この染色体対の短い方

  • It's a third the size of the X. It's recessive and mutant.

    これがY染色体です

  • But hey,

    X染色体の1/3の大きさで 劣性で 突然変異を起こしやすいのです

  • just a male.

    でも ―

  • And as you're looking at this stuff,

    男性固有のものです

  • here's kind of a country view

    この染色体を見ていきましょう

  • at a 400 base pair resolution level,

    これは国全体の地図のようなもので

  • and then you zoom in to 550, and then you zoom in to 850,

    400塩基対が見られる 解像度のレベルから

  • and you can begin to identify more and more genes as you zoom in.

    500塩基対 850塩基対レベルに 上げていくと

  • Then you zoom in to the state level,

    より多くの遺伝子が 特定できるようになります

  • and you can begin to tell who's got leukemia,

    州のスケールまで拡大すると

  • how did they get leukemia, what kind of leukemia do they have,

    白血病の原因遺伝子の保有者が 分かります

  • what shifted from what place to what place.

    白血病にかかった原因や どういう型の白血病なのか

  • And then you zoom in to the Google street view level.

    どの遺伝子が どこからどこへ 移動したかもわかります

  • So this is what happens if you have colorectal cancer

    グーグル・ストリートビューの スケールに拡大し

  • for a very specific patient on the letter-by-letter resolution.

    大腸がんを患う特定の患者を

  • So what we're doing in this stuff is we're gathering information

    塩基対単位で見れば このようになります

  • and just generating enormous amounts of information.

    遺伝子を使って 何を行っているかというと 情報を集め

  • This is one of the largest databases on the planet

    膨大な量の情報を 作り出しているにすぎません

  • and it's growing faster than we can build computers to store it.

    これは地球上 最大級の データベースの1つであり

  • You can create some incredible maps with this stuff.

    保存するコンピュータの製造が 追いつかないほど急速に巨大化しています

  • You want to understand the plague and why one plague is bubonic

    遺伝子の見事な地図を 作ることが可能です

  • and the other one is a different kind of plague

    ペストについて知りたいとして あるものが腺ペスト

  • and the other one is a different kind of plague?

    あるものは別のペスト

  • Well, here's a map of the plague.

    また あるものは 別のものになる理由は?

  • Some are absolutely deadly to humans,

    これはペスト菌のゲノム地図です

  • some are not.

    人間にとって致死的なものもあれば

  • And note, by the way, as you go to the bottom of this,

    そうでないのもあります

  • how does it compare to tuberculosis?

    さて 一番下のものに注目してください

  • So this is the difference between tuberculosis and various kinds of plagues,

    結核菌と比べるとどうでしょう?

  • and you can play detective with this stuff,

    これが結核菌と 様々なペスト菌との違いなのです

  • because you can take a very specific kind of cholera

    また この地図で 探偵のように調査できます

  • that affected Haiti,

    ハイチを襲ったコレラの 特定の遺伝子情報を調べ

  • and you can look at which country it came from,

    ハイチを襲ったコレラの 特定の遺伝子情報を調べ

  • which region it came from,

    それがどの国から持ち込まれたか

  • and probably which soldier took that from that African country to Haiti.

    どの地方から来たか

  • Zoom out.

    さらには アフリカからハイチへ持ち込んだ 兵士さえおそらく特定できるでしょう

  • It's not just zooming in.

    ズームアウトしましょう

  • This is one of the coolest maps ever done by human beings.

    ズームインだけではないんです

  • What they've done is taken all the genetic information they have

    これは人類が作成した 最も素晴らしい地図の1つです

  • about all the species,

    これは全ての種の全遺伝子情報を

  • and they've put a tree of life on a single page

    集めたもので

  • that you can zoom in and out of.

    単一のページに 生命の系統図が書き込まれていて

  • So this is what came first, how did it diversify, how did it branch,

    拡大・縮小して見ることができます

  • how large is that genome,

    生命の究極の祖先 多様化、分岐の様子

  • on a single page.

    ゲノムの大きさが

  • It's kind of the universe of life on Earth,

    1ページにまとまっています

  • and it's being constantly updated and completed.

    地球上の生命の 全世界のようなものであり

  • And so as you're looking at this stuff,

    しかも 常に更新され 完全になりつつあります

  • the really important change is the old biology used to be reactive.

    しかも このページを見ると

  • You used to have a lot of biologists that had microscopes,

    重大な変化が見てとれます かつて生物学は「受け身」でした

  • and they had magnifying glasses and they were out observing animals.

    多くの生物学者は 顕微鏡を用いたり

  • The new biology is proactive.

    拡大鏡を使ったり 屋外に出て動物を観察していました

  • You don't just observe stuff, you make stuff.

    新しい生物学は「積極的」です

  • And that's a really big change

    モノを観察するだけでなく 作り出します

  • because it allows us to do things like this.

    これは実に大きな変化です

  • And I know you're really excited by this picture.

    だってこのようなことが 出来てしまうのですから

  • (Laughter)

    この写真を見て 皆さんも興奮するでしょう

  • It only took us four years and 40 million dollars

    (笑)

  • to be able to take this picture.

    この画像を撮るのにかかったのは [10]年の歳月と

  • (Laughter)

    4千万ドルだけです

  • And what we did

    (笑)

  • is we took the full gene code out of a cell --

    何をしたかというと

  • not a gene, not two genes, the full gene code out of a cell --

    まず 細胞から全遺伝暗号を 取り除きました

  • built a completely new gene code,

    遺伝子1つや2つではなく 細胞の全遺伝暗号です

  • inserted it into the cell,

    全く新しい遺伝暗号を合成し

  • figured out a way to have the cell execute that code

    その細胞に注入し

  • and built a completely new species.

    細胞にこれを実行させる 方法を見つけ出し

  • So this is the world's first synthetic life form.

    全く新しい種を作り出したのでした

  • And so what do you do with this stuff?

    この世で初めての 合成生物なのです

  • Well, this stuff is going to change the world.

    これをどうするのかって?

  • Let me give you three short-term trends

    これは世界を変貌させます

  • in terms of how it's going to change the world.

    世界をどう変えるかについて

  • The first is we're going to see a new industrial revolution.

    短期的な観点から3つ挙げてみます

  • And I actually mean that literally.

    1つ目は新たな産業革命を 目撃することになります

  • So in the same way as Switzerland and Germany and Britain

    これは文字通りの意味で

  • changed the world with machines like the one you see in this lobby,

    スイス、ドイツ、イギリスが 機械を使って —

  • created power --

    ここのロビーにあるような機械で ― 世界を変革し

  • in the same way CERN is changing the world,

    エネルギーを作り出しました

  • using new instruments and our concept of the universe --

    CERNが 新しい装置によって世の中を変え

  • programmable life forms are also going to change the world

    我々の宇宙観を変えたように

  • because once you can program cells

    プログラム可能な生命体も この世を変えていきます

  • in the same way as you program your computer chip,

    コンピュータと同じように

  • then you can make almost anything.

    細胞をプログラムできるようになれば

  • So your computer chip can produce photographs,

    ほぼ何でも作れるからです

  • can produce music, can produce film,

    コンピュータは 写真を生成し

  • can produce love letters, can produce spreadsheets.

    音楽、映像を作り

  • It's just ones and zeroes flying through there.

    ラブレターを書き 表計算シートを生成します

  • If you can flow ATCGs through cells,

    そこには0と1が 飛び交っているだけです

  • then this software makes its own hardware,

    細胞にATCGを送り込むことが可能なら

  • which means it scales very quickly.

    ソフトウェアは 自らのハードウェアを作り出し ―

  • No matter what happens,

    つまり あっという間に 増殖していきます

  • if you leave your cell phone by your bedside,

    どんな奇跡が起ころうとも

  • you will not have a billion cell phones in the morning.

    ベッド脇に携帯電話を放置しても

  • But if you do that with living organisms,

    朝になって 10億個に 増えることはありませんが

  • you can make this stuff at a very large scale.

    生物の場合

  • One of the things you can do is you can start producing

    増殖が大規模に起こります

  • close to carbon-neutral fuels

    ほぼ炭素中立な燃料を

  • on a commercial scale by 2025,

    商業規模で

  • which we're doing with Exxon.

    2025年までに生産することも 実現可能です

  • But you can also substitute for agricultural lands.

    エクソン・モービルとの共同事業です

  • Instead of having 100 hectares to make oils or to make proteins,

    農地に転用することも可能です

  • you can make it in these vats

    石油やタンパク質を作るために 100ヘクタールの土地を準備しなくても

  • at 10 or 100 times the productivity per hectare.

    こういう水槽で同じものを

  • Or you can store information, or you can make all the world's vaccines

    1ヘクタール当たり 10倍から100倍 生産できます

  • in those three vats.

    情報の保存や 全世界が必要とするワクチンの製造だって

  • Or you can store most of the information that's held at CERN in those three vats.

    水槽が3つあれば出来ます

  • DNA is a really powerful information storage device.

    CERNが保有するほぼ全情報も この3つの水槽に保存できるんです

  • Second turn:

    DNAは実にすばらしい 情報記憶装置なのです

  • you're beginning to see the rise of theoretical biology.

    2つ目です

  • So, medical school departments are one of the most conservative places on earth.

    理論生物学が流行り始めています

  • The way they teach anatomy is similar to the way they taught anatomy

    医学部というものは この世で最も保守的な存在の1つです

  • 100 years ago.

    解剖学の教育方法は 100年前の方法と

  • "Welcome, student. Here's your cadaver."

    あまり変わりません

  • One of the things medical schools are not good at is creating new departments,

    「学生諸君 これが解剖用の死体だ」

  • which is why this is so unusual.

    医学部が苦手なことの1つは 新しい学部を創設することなので

  • Isaac Kohane has now created a department based on informatics, data, knowledge

    とても珍しいことですが

  • at Harvard Medical School.

    アイザック・コウヘインはハーバード医学校に 情報科学、データ、知識に基づく ―

  • And in a sense, what's beginning to happen is

    学部を創設しました

  • biology is beginning to get enough data

    ある意味 今 起ころうとしているのは

  • that it can begin to follow the steps of physics,

    生物学が十分な量の データを手に入れつつあり

  • which used to be observational physics

    物理学と同じ道のりを 辿り始めているということです

  • and experimental physicists,

    物理学は 観測的な物理学や

  • and then started creating theoretical biology.

    実験物理学から始まったのでした

  • Well, that's what you're beginning to see

    同様に理論生物学が 創成されたということです

  • because you have so many medical records,

    我々がこれから目にしていく学問です

  • because you have so much data about people:

    なぜなら 多くの医学的データが得られ

  • you've got their genomes, you've got their viromes,

    人間に関するデータが 集まったからです

  • you've got their microbiomes.

    ゲノム ウィルス叢のゲノム

  • And as this information stacks,

    ヒト微生物叢のゲノムを得て

  • you can begin to make predictions.

    このような情報が蓄積していくと

  • The third thing that's happening is this is coming to the consumer.

    予測を始められます

  • So you, too, can get your genes sequenced.

    3つ目は 消費者に対する影響です

  • And this is beginning to create companies like 23andMe,

    個人の遺伝子の解読も可能となり

  • and companies like 23andMe are going to be giving you

    23andMeのような会社が 創立されるようになりました

  • more and more and more data,

    このような会社は 皆さんに とても多くの

  • not just about your relatives,

    データを提供します

  • but about you and your body,

    あなたの親戚に限らず

  • and it's going to compare stuff,

    あなたの体に関するデータです

  • and it's going to compare stuff across time,

    そしてゲノムを比較し

  • and these are going to become very large databases.

    時代的な変化を分析し

  • But it's also beginning to affect a series of other businesses

    巨大なデータベースを 構築していきます