Placeholder Image

字幕表 動画を再生する

  • I thought I'd talk a little bit about how nature makes materials.

    翻訳: Satoshi Tatsuhara 校正: Masaaki Ueno

  • I brought along with me an abalone shell.

    自然界で物質はどう作られるのでしょう

  • This abalone shell is a biocomposite material

    アワビの貝殻を持って来ました

  • that's 98 percent by mass calcium carbonate

    これは生物が作り出した材料です

  • and two percent by mass protein.

    質量の98%が 炭酸カルシウム

  • Yet, it's 3,000 times tougher than its geological counterpart.

    質量の2%が タンパク質で

  • And a lot of people might use structures like abalone shells,

    生息環境にあるほかの物質より

  • like chalk.

    3,000倍も頑丈にできています

  • I've been fascinated by how nature makes materials,

    アワビの貝殻のような構造物は広く利用されています

  • and there's a lot of secrets to how they do such an exquisite job.

    例えば チョークです

  • Part of it is that these materials are macroscopic in structure,

    自然界の物づくりは魅力的で

  • but they're formed at the nano scale.

    その妙技から

  • They're formed at the nano scale,

    たくさんのことが学べます

  • and they use proteins that are coded by the genetic level

    例えば これは

  • that allow them to build these really exquisite structures.

    肉眼で見える構造物ですが

  • So something I think is very fascinating is:

    ナノスケールで

  • What if you could give life to non-living structures,

    組み立てられています

  • like batteries and like solar cells?

    遺伝子レベルでコード化されたタンパク質を使うことで

  • What if they had some of the same capabilities

    精巧な構造物を組み上げることができるのです

  • that an abalone shell did,

    そこで 生命を持たない ―

  • in terms of being able to build really exquisite structures

    例えば 太陽電池などの各種の電池に

  • at room temperature and room pressure,

    命を持たせたらどうなるのか

  • using nontoxic chemicals

    とても興味がわいてきます

  • and adding no toxic materials back into the environment?

    生命を持たない物体が

  • So that's kind of the vision that I've been thinking about.

    アワビの貝殻と同じ能力をもつ

  • And so what if you could grow a battery in a Petri dish?

    つまり 室温 大気圧下で

  • Or what if you could give genetic information to a battery

    無害な化学物質を使って

  • so that it could actually become better as a function of time, and do so

    精巧な構造物を作る能力をもち

  • in an environmentally friendly way?

    有害な物質を

  • And so, going back to this abalone shell,

    環境に出さないとしたらどうでしょう?

  • besides being nanostructured, one thing that's fascinating is,

    そんなことを思い描いてきたのです

  • when a male and female abalone get together,

    シャーレで電池を育てられたら?

  • they pass on the genetic information that says,

    電池に遺伝情報を組み込んで

  • "This is how to build an exquisite material.

    時間の経過とともに

  • Here's how to do it at room temperature and pressure,

    進化させられたら?

  • using nontoxic materials."

    しかも環境に優しくできないか?

  • Same with diatoms, which are shown right here,

    アワビの貝殻に話を戻しますが

  • which are glasseous structures.

    ナノ構造もそうですが

  • Every time the diatoms replicate,

    もう一つ興味を引かれるのは

  • they give the genetic information that says,

    アワビのオスとメスが協力して

  • "Here's how to build glass in the ocean that's perfectly nanostructured."

    遺伝情報を伝える点です

  • And you can do it the same, over and over again."

    「精巧な物質は こう組み立てる」

  • So what if you could do the same thing with a solar cell or a battery?

    「室温 大気圧下で こうやる」

  • I like to say my favorite biomaterial is my four year old.

    「無害な材料で こうやる」

  • But anyone who's ever had or knows small children knows,

    ケイ藻も同じです ガラスのような構造をしていて

  • they're incredibly complex organisms.

    分裂する時に

  • If you wanted to convince them to do something they don't want to do,

    遺伝情報を伝えます

  • it's very difficult.

    「完全なナノ構造のガラスを

  • So when we think about future technologies,

    海で組み上げるにはこうする」

  • we actually think of using bacteria and viruses --

    「同じように繰り返せる」

  • simple organisms.

    太陽電池などの電池で 同じように

  • Can you convince them to work with a new toolbox,

    できたらどうでしょう?

  • so they can build a structure that will be important to me?

    大好きなバイオマテリアルは 4歳の子です

  • Also, when we think about future technologies,

    育児経験者や よくご存知の方ならお分かりでしょうが

  • we start with the beginning of Earth.

    4歳の子どもは ややこしい生命体です

  • Basically, it took a billion years to have life on Earth.

    無理に何かをさせるのは

  • And very rapidly, they became multi-cellular,

    とても大変です

  • they could replicate, they could use photosynthesis

    そこで 未来のテクノロジーについて検討する時

  • as a way of getting their energy source.

    細菌やウイルスといった

  • But it wasn't until about 500 million years ago --

    原始的な生物の利用を考えます

  • during the Cambrian geologic time period --

    新しいツールボックスを利用して

  • that organisms in the ocean started making hard materials.

    私たちにとって意味ある構造物を

  • Before that, they were all soft, fluffy structures.

    作らせることが可能でしょうか?

  • It was during this time that there was increased calcium,

    未来のテクノロジーを検討するとき

  • iron and silicon in the environment,

    地球誕生から考え始めます

  • and organisms learned how to make hard materials.

    地球に生命が生まれるまで

  • So that's what I would like to be able to do,

    10億年かかりました

  • convince biology to work with the rest of the periodic table.

    急速に多細胞化して

  • Now, if you look at biology,

    複製可能となり エネルギー供給手段として

  • there's many structures like DNA, antibodies, proteins and ribosomes

    光合成も可能になりました

  • you've heard about,

    でも5億年ほど前

  • that are nanostructured --

    カンブリア紀に入ってようやく

  • nature already gives us really exquisite structures on the nano scale.

    海の生命が 堅い物質を作るようになりました

  • What if we could harness them

    それまでは 柔らかくふわっとしていたのです

  • and convince them to not be an antibody that does something like HIV?

    この時代 その環境には

  • What if we could convince them to build a solar cell for us?

    カルシウムと鉄とケイ素が

  • Here are some examples.

    増えていました

  • Natural shells, natural biological materials.

    生命体は堅い物質を作る方法を習得しました

  • The abalone shell here.

    私は これを実現したいのです

  • If you fracture it, you can look at the fact that it's nanostructured.

    周期表の残りの元素を

  • There's diatoms made out of SiO2,

    生物に活用してもらうのです

  • and there are magnetotactic bacteria

    生物をよく見ると DNAや抗体

  • that make small, single-domain magnets used for navigation.

    タンパク質 リボゾームなど

  • What all these have in common

    ナノ構造の物質はたくさんあります

  • is these materials are structured at the nano scale,

    自然界はナノスケールの

  • and they have a DNA sequence that codes for a protein sequence

    精巧な構造物を

  • that gives them the blueprint

    用意してくれています

  • to be able to build these really wonderful structures.

    HIVのような仕組みで

  • Now, going back to the abalone shell,

    ナノスケールの生体組織に

  • the abalone makes this shell by having these proteins.

    抗体を作らせないようにして

  • These proteins are very negatively charged.

    太陽電池を作らせるのは

  • They can pull calcium out of the environment,

    どうでしょう?

  • and put down a layer of calcium and then carbonate, calcium and carbonate.

    これは自然界の貝殻です

  • It has the chemical sequences of amino acids which says,

    自然界のバイオマテリアルです

  • "This is how to build the structure.

    アワビの貝殻を割ってみると

  • Here's the DNA sequence, here's the protein sequence

    ナノ構造が見つかります

  • in order to do it."

    二酸化ケイ素で作られたケイ藻は

  • So an interesting idea is,

    走磁性細菌といい

  • what if you could take any material you wanted,

    小さな単磁区を作って方向を判断します

  • or any element on the periodic table,

    共通点は ナノスケールで

  • and find its corresponding DNA sequence,

    組み上げられている点と

  • then code it for a corresponding protein sequence to build a structure,

    タンパク質配列をコード化した

  • but not build an abalone shell --

    DNA配列が

  • build something that nature has never had the opportunity to work with yet.

    すばらしい構造を作るための

  • And so here's the periodic table.

    設計図となっている点です

  • I absolutely love the periodic table.

    アワビの貝殻は

  • Every year for the incoming freshman class at MIT,

    こういったタンパク質を使って貝殻を作っています

  • I have a periodic table made that says,

    タンパク質は負の電荷を帯びて

  • "Welcome to MIT. Now you're in your element."

    環境からカルシウムを取り込み

  • (Laughter)

    カルシウムの層を作り 炭酸塩化することを繰り返します

  • And you flip it over, and it's the amino acids

    アミノ酸の化学的配列から指示が出ています

  • with the pH at which they have different charges.

    「こうやって作る」

  • And so I give this out to thousands of people.

    「これが 実行するための —

  • And I know it says MIT and this is Caltech,

    DNA配列 タンパク質配列」

  • but I have a couple extra if people want it.

    面白いアイデアがあります 所望の物質や元素を

  • I was really fortunate to have President Obama visit my lab this year

    組み上げるための

  • on his visit to MIT,

    DNA配列を見つけ出して

  • and I really wanted to give him a periodic table.

    アワビの貝殻ではなく

  • So I stayed up at night and talked to my husband,

    所望の構造物を作れるように タンパク質配列を

  • "How do I give President Obama a periodic table?

    コード化することで

  • What if he says, 'Oh, I already have one,'

    まだ利用されていない自然の力を利用するのです

  • or, 'I've already memorized it?'"

    こちらは 私の大好きな

  • (Laughter)

    周期表です

  • So he came to visit my lab and looked around -- it was a great visit.

    毎年 MITの新入生に配る周期表で

  • And then afterward, I said,

    こう書いてあります

  • "Sir, I want to give you the periodic table,

    「ようこそMITへ 得意分野(エレメント)を学ぼう」

  • in case you're ever in a bind and need to calculate molecular weight."

    裏には アミノ酸が記載されています

  • (Laughter)

    等電点も示してあります

  • I thought "molecular weight" sounded much less nerdy than "molar mass."

    何千もの人に配っています

  • (Laughter)

    MITと書かれていますが

  • And he looked at it and said,

    こちらの大学でもお配りします

  • "Thank you. I'll look at it periodically."

    オバマ大統領の MIT訪問時に

  • (Laughter)

    私の研究室にも

  • (Applause)

    招くことになったので

  • Later in a lecture that he gave on clean energy,

    ぜひ周期表を渡したくて

  • he pulled it out and said,

    夜遅くに夫に尋ねました

  • "And people at MIT, they give out periodic tables." So ...

    「どうやって周期表を渡したらいい?

  • So basically what I didn't tell you

    持ってるとか 覚えてるとか

  • is that about 500 million years ago, the organisms started making materials,

    言われたらどうしよう」

  • but it took them about 50 million years to get good at it --

    大統領が研究室を訪れて

  • 50 million years to learn how to perfect how to make that abalone shell.

    素晴らしい視察を終えた時

  • And that's a hard sell to a graduate student:

    こう切り出しました

  • "I have this great project ... 50 million years ..."

    「周期表を差し上げます

  • So we had to develop a way of trying to do this more rapidly.

    緊急時に分子量を計算する必要があるかもしれませんから」

  • And so we use a nontoxic virus called M13 bacteriophage,

    モル質量よりも分子量と言う方が

  • whose job is to infect bacteria.

    オタクっぽくないかと ...

  • Well, it has a simple DNA structure

    大統領は周期表を見て

  • that you can go in and cut and paste additional DNA sequences into it,

    「ありがとう

  • and by doing that, it allows the virus to express random protein sequences.

    周期的に見るよ」

  • This is pretty easy biotechnology,

    (笑)

  • and you could basically do this a billion times.

    (拍手)

  • So you can have a billion different viruses

    後日 大統領は クリーンエネルギーの講演で

  • that are all genetically identical,

    周期表を出して言いました

  • but they differ from each other based on their tips,

    「MITでは周期表をもらえる」

  • on one sequence,

    まだ言っていませんでしたが

  • that codes for one protein.

    5億年前 原始的な生命体が物質を作り始めましたが

  • Now if you take all billion viruses, and put them in one drop of liquid,

    上達まで5千万年かかりました

  • you can force them to interact with anything you want

    アワビの貝殻の作り方を

  • on the periodic table.

    5千万年かけて会得したのです

  • And through a process of selection evolution,

    院生に求めるのは無理です

  • you can pull one of a billion that does something you'd like it to do,

    「すごいプロジェクトだけど 5千万年かかるの」

  • like grow a battery or a solar cell.

    もっと迅速にやる方法を

  • Basically, viruses can't replicate themselves; they need a host.

    開拓しなければなりません

  • Once you find that one out of a billion,

    そこで 細菌に感染する

  • you infect it into a bacteria, and make millions and billions of copies

    毒性の無いウイルスである

  • of that particular sequence.

    M13バクテリオファージを使います

  • The other thing that's beautiful about biology

    DNAの構造がシンプルで

  • is that biology gives you really exquisite structures

    DNA配列の切り貼りが

  • with nice link scales.

    簡単にできます

  • These viruses are long and skinny,

    このようにウイルスを使って

  • and we can get them to express the ability

    ランダムにタンパク質配列を発現させることができます

  • to grow something like semiconductors

    遺伝子工学としては簡単で

  • or materials for batteries.

    無数に繰り返すことができます

  • Now, this is a high-powered battery that we grew in my lab.

    一種類のタンパク質を作る

  • We engineered a virus to pick up carbon nanotubes.

    一つの配列を除いて

  • One part of the virus grabs a carbon nanotube,

    同じ遺伝子をもつウイルスを

  • the other part of the virus has a sequence

    無数に

  • that can grow an electrode material for a battery,

    作ることができます

  • and then it wires itself to the current collector.

    その無数のウイルスを

  • And so through a process of selection evolution,

    一滴の液体に入れて

  • we went from being able to have a virus that made a crummy battery

    任意の元素と相互作用させます

  • to a virus that made a good battery

    そして 選択と進化を経て

  • to a virus that made a record-breaking, high-powered battery

    太陽電池の育成など所望の働きをするウイルスを

  • that's all made at room temperature, basically at the benchtop.

    一つ選び出せます

  • That battery went to the White House for a press conference,

    ウイルスは自己複製できず宿主が必要ですから

  • and I brought it here.

    膨大な中から一つ見つけたら

  • You can see it in this case that's lighting this LED.

    細菌に感染させて

  • Now if we could scale this,

    その特定の配列を

  • you could actually use it to run your Prius,

    無数に複製させます

  • which is kind of my dream -- to be able to drive a virus-powered car.

    生物がすばらしいのは

  • (Laughter)

    精密で

  • But basically you can pull one out of a billion,

    精巧な構造物を作る点です

  • and make lots of amplifications to it.

    こちらの長くて薄いウイルスに

  • Basically, you make an amplification in the lab,

    発現能力を与えて

  • and then you get it to self-assemble into a structure like a battery.

    半導体や電池の材料を

  • We're able to do this also with catalysis.

    育成させることができます

  • This is the example of a photocatalytic splitting of water.

    こちらは 私の研究室で育成している高出力電池です

  • And what we've been able to do is engineer a virus

    ウイルスを改良して 一部分でカーボンナノチューブを

  • to basically take dye-absorbing molecules

    つかめるようにしてあって

  • and line them up on the surface of the virus

    ほかの部分に 電池の

  • so it acts as an antenna,

    電極材料を育成する配列を組み込んであります

  • and you get an energy transfer across the virus.

    さらに 電極材料を電流コレクタに接続します

  • And then we give it a second gene to grow an inorganic material

    選択と進化を経て

  • that can be used to split water into oxygen and hydrogen,

    性能の悪い電池を作っていたウイルスが

  • that can be used for clean fuels.

    性能の良い

  • I brought an example of that with me today.

    記録的な高出力の電池を作るウイルスに変わりました

  • My students promised me it would work.

    すべて室温の実験台で作れます

  • These are virus-assembled nanowires.

    ホワイトハウスでの会見に持って行った電池が

  • When you shine light on them, you can see them bubbling.

    こちらです

  • In this case, you're seeing oxygen bubbles come out.

    この箱の中で LEDを点灯させています

  • (Applause)

    もっと大きくできれば

  • Basically, by controlling the genes,

    実際にプリウスも

  • you can control multiple materials to improve your device performance.

    動かせるようになります

  • The last example are solar cells.

    ウイルス駆動車を運転するのが私の夢です

  • You can also do this with solar cells.

    膨大な数の

  • We've been able to engineer viruses to pick up carbon nanotubes

    ウイルスから一つを抜き出して

  • and then grow titanium dioxide around them,

    大量に複製することができます

  • and use it as a way of getting electrons through the device.

    複製は実験室でできます

  • And what we've found is through genetic engineering,

    そうやって 自己組織化させて

  • we can actually increase the efficiencies of these solar cells

    電池などを作らせるのです

  • to record numbers

    触媒作用も利用できます

  • for these types of dye-sensitized systems.

    これは 光触媒作用により

  • And I brought one of those as well,

    水が分離する例です

  • that you can play around with outside afterward.

    これまでに可能になったのは

  • So this is a virus-based solar cell.

    ウイルスを改良して その表面に

  • Through evolution and selection,

    色素吸着分子を並べて

  • we took it from an eight percent efficiency solar cell

    アンテナとして機能させ

  • to an 11 percent efficiency solar cell.

    ウイルスを介してエネルギーを伝えることです

  • So I hope that I've convinced you

    別の遺伝子には

  • that there's a lot of great, interesting things to be learned

    水を 酸素と水素に

  • about how nature makes materials,

    分解するような

  • and about taking it the next step,

    無機材料を育成させます

  • to see if you can force or take advantage of how nature makes materials,

    これでクリーンな燃料を作れます

  • to make things that nature hasn't yet dreamed of making.

    サンプルを持って来ました

  • Thank you.

    学生は動くと言っていました

  • (Applause)

    ウイルスが作ったナノワイヤーが

I thought I'd talk a little bit about how nature makes materials.

翻訳: Satoshi Tatsuhara 校正: Masaaki Ueno

字幕と単語

動画の操作 ここで「動画」の調整と「字幕」の表示を設定することができます

B1 中級 日本語 TED 電池 ウイルス 配列 貝殻 タンパク

TED】アンジェラ・ベルチャー自然を使って電池を育てる (Angela Belcher: Using nature to grow batteries) (【TED】Angela Belcher: Using nature to grow batteries (Angela Belcher: Using nature to grow batteries))

  • 43 9
    Zenn に公開 2021 年 01 月 14 日
動画の中の単語