SoDelFerrokepthisnewformula a secrettouseinhisnextduel.
Whathappensnextis a bitof a longstory, here's thequickversion:
DelFerrokepthisformulasecretuntilhewasonhisdeathbed, whenhefinallytoldhisstudentAntonioFior. Fiorimmediatelythoughthewasinvincibleoratleastinvinciblein a mathduelandchallenged a waymoreskilledmathematician, FontanaTartagliato a duel.
Thatisuntil a verytalentedmathematiciannamedCardanheardabouttheformulaandpressuredTartagliatoshare.
HeeventuallywentalongbutonlyafterCardansworetoanoathofsecrecy. Fortunatelyforus, afterCardancameacrossthesurvivingworkoftheoriginaldiscoverer, DelFerro, hefiguredthatwasn't such a bigsecretandpublishedtheformulainhisbook "ArsMagna."
Cardanwentontoimprovehisborrowedformula, evenmakingitworkforcubicsthatincludedan x^2 term. HoweveralongthewayCardancameacross a problem:
in a slightlydifferentversionoftheequation, writtenas x^3=cx+d, undercertainvaluesof c and d, theformulawouldbreak.
Let's taketheinnocent-lookingequation x^3=15x+4.
WhenweplugintoCardan's formula, weget a resultthatinvolvesthesquarerootofnegativenumbers.
Thesquarerootof a negativenumbercreatedenoughof a problemtostopCardaninhistracks.
Squarerootsaskustofind a number, thatwhenmultipliedbyitself, yieldthenumberinsidetherootsign.