字幕表 動画を再生する
Everyone loves the idea of parallel universes - maybe it's the appeal of an ideal world
where you have second chances and things turn out differently - an alternate reality where
you do get into Hogwarts and the Star Wars prequels aren't made and you finally plug
in your asymmetric computer cord correctly on the first try... but is there really a
place in science for such wistful speculation?
I mean, if "the universe" is everything that there is, you can't have two versions of it,
right? Otherwise the pair would really be everything and what you started off calling
the universe, wasn't.
The problem here is terminology: physicists speaking informally often say "universe" when
they really mean "observable universe" - that is, the part of the whole universe that we've
so far been able to see. And it's perfectly fine to talk about multiple different observable
universes - for example, an alien near the edge of OUR observable universe will see parts
of the Whole Universe that we cannot yet see, but that's a well-understood question and
not what physicists normally talk about when they discuss multiple observable universes,
or "multi-verses."
So let's cut to the chase: in physics, the word "Multiverse" normally refers to one of
three distinct and largely unrelated proposed physical models for the universe - none of
which has been tested or confirmed by experiment, by the way. The three "multiverse" models
are:
Type 1) Bubble universes or baby black hole universes. This is the most straightforward
kind of multiverse: the basic idea is that perhaps there are other parts of the universe
which are so far away that we will never see them (or are inside black holes so similarly
we will never see them). This kind of model was created as an attempt
to explain why our universe is so good at making stars and galaxies and black holes
and life - as the argument goes, if each of these separate mutually un-seeable "bubbles"
in the universe had slightly different laws of physics, then by definition we could only
exist in one that had the right physical laws to allow us to exist. If you're not convinced
by this logic, don't worry too much: there's not yet any experimental evidence for this
kind of multiverse. Multiverse type 2) Membranes and extra dimensions.
Inspired in part by the inability of the mathematics of string theory to predict the right number
of dimensions for the universe in which we live, string theorists proposed the idea that
perhaps what we think of as our universe is actually just a three-dimensional surface
embedded within a larger super-universe with 9 spatial dimensions. Kind of like how each
page of a newspaper is its own two-dimensional surface embedded within our three-dimensional
world. And of course, if space had 9 dimensions rather
than three, there'd be plenty of space for other three-dimensional surfaces that appeared,
like ours, to be universes in their own right, but, like the pages of a newspaper, were actually
part of a bigger whole. These kinds of surfaces are called "membranes" or "branes" for short.
And as a reminder, there is not yet any experimental evidence for this kind of multiverse.
Multiverse type 3) The many-worlds picture of quantum mechanics. Surprisingly, physicists
still don't fully understand how the collapse of the wavefunction in quantum mechanics happens,
and the many-worlds hypothesis makes an attempt at explanation by proposing that every possible
alternate timeline for the universe is real and they all happen in an ever-larger, ever-branching
way. Like, a universal choose-your-own-adventure where every possible story happens!
If this were the case, we might not realize it because we'd be stuck living out just one
of the infinitely many possible lives available to us. In some ways, many-worlds is similar
to the bubble multiverse model by proposing "maybe anything that can happen, does. And
we just happen to exist in the series of happenings that were necessary for us to exist." If you're
still not convinced by this logic, don't worry: there is not yet any experimental evidence
for this kind of multiverse.
Of course if you want to get imaginative, you could also combine several of these models
together into a multi-multiverse... a new super-speculative model based, itself, on
speculative and experimentally unconfirmed models.
But that's not to say we couldn't test these multiverse hypotheses. For example, if our
observable universe were really just one of many disconnected bubbles or membranes and
if it happened to collide with another bubble or membrane some time in the past, then that
collision would certainly have had some sort of effect on what we see when we look up at
the night sky. On the other hand, the many-worlds interpretation
might be tested fairly soon since experimentalists are becoming increasingly able to manipulate
and control ever-larger quantum mechanical systems in their labs - systems that approach
the line between the quantum realm and our everyday experience.
So as always, we must remember that physics is science, not philosophy; and in our attempts
to explain the universe that we observe, we have to make claims that can in principle
be tested - and then test them!