字幕表 動画を再生する
Tit for tat is an English saying meaning "equivalent retaliation". It is also a highly effective
strategy in game theory for the iterated prisoner's dilemma. The strategy was first introduced
by Anatol Rapoport in Robert Axelrod's two tournaments, held around 1980. Notably, it
was both the simplest strategy and the most successful in direct competition.
An agent using this strategy will first cooperate, then subsequently replicate an opponent's
previous action. If the opponent previously was cooperative, the agent is cooperative.
If not, the agent is not. This is similar to superrationality and reciprocal altruism
in biology.
Implications The success of the tit-for-tat strategy, which
is largely cooperative despite that its name emphasizes an adversarial nature, took many
by surprise. Arrayed against strategies produced by various teams it won in two competitions.
After the first competition, new strategies formulated specifically to combat tit-for-tat
failed due to their negative interactions with each other; a successful strategy other
than tit-for-tat would have had to be formulated with both tit-for-tat and itself in mind.
This result may give insight into how groups of animals have come to live in largely cooperative
societies, rather than the individualistic "red in tooth and claw" way that might be
expected from individuals engaged in a Hobbesian state of nature. This, and particularly its
application to human society and politics, is the subject of Robert Axelrod's book The
Evolution of Cooperation. Moreover, the tit-for-tat strategy has been
of beneficial use to social psychologists and sociologists in studying effective techniques
to reduce conflict. Research has indicated that when individuals who have been in competition
for a period of time no longer trust one another, the most effective competition reverser is
the use of the tit-for-tat strategy. Individuals commonly engage in behavioral assimilation,
a process in which they tend to match their own behaviors to those displayed by cooperating
or competing group members. Therefore, if the tit-for-tat strategy begins with cooperation,
then cooperation ensues. On the other hand, if the other party competes, then the tit-for-tat
strategy will lead the alternate party to compete as well. Ultimately, each action by
the other member is countered with a matching response, competition with competition and
cooperation with cooperation. In the case of conflict resolution, the tit-for-tat
strategy is effective for several reasons: the technique is recognized as clear, nice,
provocable, and forgiving. Firstly, It is a clear and recognizable strategy. Those using
it quickly recognize its contingencies and adjust their behavior accordingly. Moreover,
it is considered to be nice as it begins with cooperation and only defects in following
competitive move. The strategy is also provocable because it provides immediate retaliation
for those who compete. Finally, it is forgiving as it immediately produces cooperation should
the competitor make a cooperative move. Individuals who employ the tit-for-tat strategy
are generally considered to be tough but fair—a disposition that is often respected in the
business/organization world. Those who always cooperate with a competitor are often viewed
as weak, while those who consistently compete are perceived as unfair. In any case, the
implications of the tit-for-tat strategy have been of relevance to conflict research, resolution
and many aspects of applied social science. Problems
While Axelrod has empirically shown that the strategy is optimal in some cases of direct
competition, two agents playing tit for tat remain vulnerable. A one-time, single-bit
error in either player's interpretation of events can lead to an unending "death spiral".
In this symmetric situation, each side perceives itself as preferring to cooperate, if only
the other side would. But each is forced by the strategy into repeatedly punishing an
opponent who continues to attack despite being punished in every game cycle. Both sides come
to think of themselves as innocent and acting in self-defense, and their opponent as either
evil or too stupid to learn to cooperate. This situation frequently arises in real world
conflicts, ranging from schoolyard fights to civil and regional wars. Tit for two tats
could be used to mitigate this problem; see the description below.
"Tit for tat with forgiveness" is sometimes superior. When the opponent defects, the player
will occasionally cooperate on the next move anyway. This allows for recovery from getting
trapped in a cycle of defections. The exact probability that a player will respond with
cooperation depends on the line-up of opponents. The reason for these issues is that tit for
tat is not a subgame perfect equilibrium, except under knife-edge conditions on the
discount rate. If one agent defects and the opponent cooperates, then both agents will
end up alternating cooperate and defect, yielding a lower payoff than if both agents were to
continually cooperate. While this subgame is not directly reachable by two agents playing
tit for tat strategies, a strategy must be a Nash equilibrium in all subgames to be subgame
perfect. Further, this subgame may be reached if any noise is allowed in the agents' signaling.
A subgame perfect variant of tit for tat known as "contrite tit for tat" may be created by
employing a basic reputation mechanism. Furthermore, the tit-for-tat strategy is not
proved optimal in situations short of total competition. For example, when the parties
are friends it may be best for the friendship when a player cooperates at every step despite
occasional deviations by the other player. Most situations in the real world are less
competitive than the total competition in which the tit-for-tat strategy won its competition.
Tit for two tats Tit for two tats is similar to tit for tat
in that it is nice, retaliating, forgiving and non-envious, the only difference between
the two being how forgiving the strategy is. In a tit for tat strategy, once an opponent
defects, the tit for tat player immediately responds by defecting on the next move. This
has the unfortunate consequence of causing two retaliatory strategies to continuously
defect against one another resulting in a poor outcome for both players. A tit for two
tats player will let the first defection go unchallenged as a means to avoid the "death
spiral" of the previous example. If the opponent defects twice in a row, the tit for two tats
player will respond by defecting. This strategy was put forward by Robert Axelrod
during his second round of computer simulations at RAND. After analyzing the results of the
first experiment, he determined that had a participant entered the tit for two tats strategy
it would have emerged with a higher cumulative score than any other program. As a result,
he himself entered it with high expectations in the second tournament. Unfortunately, owing
to the more aggressive nature of the programs entered in the second round, which were able
to take advantage of its highly forgiving nature, tit for two tats did significantly
worse than tit for tat. Real world use
Peer-to-peer file sharing
BitTorrent peers use tit-for-tat strategy to optimize their download speed. More specifically,
most BitTorrent peers use a variant of Tit for two Tats which is called regular unchoking
in BitTorrent terminology. BitTorrent peers have a limited number of upload slots to allocate
to other peers. Consequently, when a peer's upload bandwidth is saturated, it will use
a tit-for-tat strategy. Cooperation is achieved when upload bandwidth is exchanged for download
bandwidth. Therefore, when a peer is not uploading in return to our own peer uploading, the BitTorrent
program will choke the connection with the uncooperative peer and allocate this upload
slot to a hopefully more cooperating peer. Regular unchoking corresponds very strongly
to always cooperating on the first move in prisoner’s dilemma. Periodically, a peer
will allocate an upload slot to a randomly chosen uncooperative peer. This is called
optimistic unchoking. This behavior allows searching for more cooperating peers and gives
a second chance to previously non-cooperating peers. The optimal threshold values of this
strategy are still the subject of research. Explaining reciprocal altruism in animal communities
Studies in the prosocial behaviour of animals, have led many ethologists and evolutionary
psychologists to apply tit-for-tat strategies to explain why altruism evolves in many animal
communities. Evolutionary game theory, derived from the mathematical theories formalised
by von Neumann and Morgenstern, was first devised by Maynard Smith and explored further
in bird behaviour by Robert Hinde. Their application of game theory to the evolution of animal
strategies launched an entirely new way of analysing animal behaviour.
Reciprocal altruism works in animal communities where the cost to the benefactor in any transaction
of food, mating rights, nesting or territory is less than the gains to the beneficiary.
The theory also holds that the act of altruism should be reciprocated if the balance of needs
reverse. Mechanisms to identify and punish "cheaters" who fail to reciprocate, in effect
a form of tit for tat, are important to regulate reciprocal altruism. For example, tit-for-tat
is suggested to be the mechanism of cooperative predator inspection behavior in guppies.
War The tit-for-tat inability of either side to
back away from conflict, for fear of being perceived as weak or as cooperating with the
enemy, has been the source of many conflicts throughout history.
However, the tit for tat strategy has also been detected by analysts in the spontaneous
non-violent behaviour, called "live and let live" that arose during trench warfare in
the First World War. Troops dug in only a few hundred feet from each other would evolve
an unspoken understanding. If a sniper killed a soldier on one side, the other could expect
an equal retaliation. Conversely, if no one was killed for a time, the other side would
acknowledge this implied "truce" and act accordingly. This created a "separate peace" between the
trenches. See also
An eye for an eye Attitude polarization
Chicken Christmas truce
Deterrence theory Golden Rule
Mutual assured destruction Nice Guys Finish First, a documentary by Richard
Dawkins that discusses tit for tat. Quid pro quo
Trigger strategy, a set of strategies of which tit for tat is a member.
Virtuous circle and vicious circle Zero-sum game
References
External links Wired magazine story about tit for tat being
'defeated' by a group of collaborating programs Explanation of Tit for tat on Australian Broadcasting
Corporation