Wealsowantedtogive a shout-outtotheRoadLessScheduled, whichreimaginesoptimizationbyeliminatingtheneedforlearningrateschedules, allwhilemaintainingstate-of-the-artperformanceacross a varietyoftasks.
Thesemodelsoutperformmodernalternativesliketransformersandstate-spacemodels, particularlyinscalingandefficiency, makingthem a noteworthycontenderinlanguagemodeling.
SphericalDiffusioncombines a dynamics-informeddiffusionframeworkwiththeSphericalFourierNeuralOperatortocreatehighlyaccurate, physicallyconsistentclimatesimulations.
Using a causaltransformertrainedondiversesensorimotordatasets, includingYouTubevideos, theyenabled a robottowalkinreal-worldenvironments, likethestreetsofSanFrancisco, zero-shot.
SpecialmentionsgotoSGLang, a systemforefficientlyprogrammingcomplexlanguagemodelworkflows, andBufferofThoughts, a frameworkforreasoningthatimprovesaccuracy, efficiency, androbustnessbystoringhigh-levelthoughtprocesses.
特に、複雑な言語モデルのワークフローを効率的にプログラミングするシステムであるSGLangと、高レベルの思考プロセスを保存することで正確性、効率性、堅牢性を向上させる推論のためのフレームワークであるBuffer of Thoughtsに言及する。
UsingtheirnewSpatialVisionAggregator, theauthorsbridgethegapbetweenlanguageandvision, achievingstate-of-the-artresultsandreleasing a treasuretroveofresourcesforthecommunity.