Sotheamplitudeof a particularsolutionwillforexamplewillbegivenbythisequationwejustcalculatedandweseethatweseethatthisamplitudeactuallydependsonthefrequencyandwecanaskourselveswhat's theresonantfrequencyinotherwordswhat's thefrequencyofthemaximumamplitudeandthenweknowsincewehavethenumeratoris a constantwejusthavetominimizethedenominator.
Thisis a straightforwardderivativesoyoutrytominimizetomake a derivativeequaltozeroandwefindthatthemaximumof d willbeobtainedbyfrequencyomega r isequaltoomegazerosquareminustwobetasquare.
Sowecallthis a resonantfrequencyomega r omegazerosquareminustwobetasquareandthenweseethatthisresonantfrequencycanbemodulatedbychangingthedampingsothere's a lotofdamping.
そして、この共振周波数は減衰を変えることで変調できることがわかる。
I meanifthedampingisfairlylargenottoolargebutlet's sayfairlylargesothatomegazerosquareminustwobetasquareis a positivestill a positivenumberthentheresonantfrequencygoesdown.
Thereisnoresonancehoweveriftwobetasquareislargerthanomegazerosquarebecauseinthatcasetheresonantfrequencyisactually a complexnumberwhichactuallyit's animaginaryandthenwewouldhave a monotonicdecrease.
Okaysojusttosummarize a littlebitwhatwe'vedonesofarwe'velookedat a numberoffrequencieswe'velookedatwhenwelookedatthreeoscillationsnodampingnoforcewefoundthenaturalfrequencyomegazerosquareequal k over m.
Thisfrequencyomegaonecouldbeeitheranoscillationlikeintheunderdampingorit's nolongeranoscillationwhenweareforexampleinoverdampingbutintheunderdampingwhichisactuallythesolutionthat's writtenonthisslidewiththeenvelopefunctionomegaoneis a frequencynotsomuchof a periodicityoftheresponsesincetheamplitudegoesdownsoyoudon't repeatthesamesolutionbutasbasicallythefrequencybetweenmaxima.
Soyouseewhenyoulookatthesethreefrequencieswhicharetypicalfrequenciesforforourdrivenoscillationthatomegazeroisalwayslargerthanomegaoneandwhichiswhichisitselfalwayslargerthanomega r.
Butthatoneiseasytoseewherethemaximumcontributionthepotentialenergywillbebecauseitwillbethelargestwillbewhenthedisplacementisthelargestandofcoursethispersonisthelargestatomega r.