Inthisplaylistwe'regoingtotake a closerlookatsimpleharmonicmotionandinparticularhowtheequationisderivedwhatitmeansphysicallyrelativetowhat's happeningwhenthere's simpleharmonicmotionandthenwe'realsogoingtolookatitintermsofthedampingbecause a lotofsimpleharmonicmotioninvolvesdampingandwewanttoseehowtheequationitselfisderivedandhowtoutilizethatequationaswellandthere's severalsolutionsthatweneedtolookatdependinguponwhatkindofdampingwe'redealingwith.
Onceweallowittobalancesolet's saywehangitontheattheequilibriumpointthenwecangiveit a pushupwardorwecanpulldownwardandthenit'llbegintooscillateupanddown.
Sowehavepositiveamplitudenegativeamplitudeatthismomentthevelocityiszerotheaccelerationisupwardandthenitreachesbacktotheequilibriumpointjustlikeitwasoverherewithanupwardvelocity X isequaltozeroandthere's noaccelerationthatmomentbecausethere's nonetforceactingonthemass.
Andsothat's howitiscontinuousupanddownandnoticethatthere's somerelationshipto a sineor a Andthenwemoved a paperpastthatpencilat a constantspeedasthisisoscillatingupanddownyouwouldactuallythepenwouldactuallymakethatsinewaveorthatcosinewaveasthepaperismovingandastheobjectisoscillatingupanddown.
StartingwithNewton's secondlawwhere f equalsmawecanturnthemaequals f andthenweknowthattheforceexertedonthemassbythespringisequaltominuskx. k isthespringconstantand X is a distanceawayfromtheequilibriumpoint.
Noticethenegativesignbecauseifthemassisin a positivepositionthespringisthenpushinginthenegativedirectionthat's whythenegativeisthere.
負の符号に注目してほしい。質量が正の位置にある場合、スプリングは負の方向に押されるからである。
Thenwerealizethattheaccelerationisessentiallythesecondderivativeofpositionwithrespecttotimesowecanreplace a bythatandthennoticethatifwemovetheminuskxtotheleftweendupwithanequationhereequaltozeroandalsonoticeifwedivideeverythingby m thenwehave d square x dtsquarewithotherwordsthesecondderivativeof x withrespecttotimeplus k over m times x equalszero.
Againthisisanundampedcaseandifwethenreplacethiswith x doubledot. x doubledotsimplymeansthesecondderivativeof x withrespecttotimeandthenifweallowOmegatobeequaltothesquarerootof k over m whichessentiallythat's thedefinitionofOmegawecannowwritethisas x doubledotplusOmegasquared x equalszerowhichisthesecondorderdifferentialequationofanundampedsystem.
Whentimeequalszerothesineofzeroiszeroand x willbeatzerosothat's whatwehaveoverhere.
時間がゼロに等しいとき、ゼロの正弦はゼロとなり、xはゼロになる。
Howeveriftimeequalszerowhentheobjectisupherethenwehave a cosinefunctionbecausenoticenowwhentimeequalszerothecosineofzeroisoneand x equals a whichiswhatwehaveoverhere.
Nowofcourseitcouldbeoverhereonthewaydownitcouldbeoverhereattimeequalszeroandthenwehavetomodifytheequationbyputting a negativesigninfrontorbyhaving a phaseangleandwe'llshowyouhowtodothatinthelatervideo.
Wellfirstofallwecantakethefirstderivativewithrespecttotimeandthederivativeofthesineisthecosineandthederivativeoftheangleomega t isomegasoendupwith a omegacosineofomega t.
Andthesquarerootof k over m. m isindeedtheangularspeedortheangularfrequencyofthemotion.
mは角速度または運動の角周波数である。
Againwe'llshowyoumoreaboutthat.
これについてはまた改めて詳しく紹介しよう。
Butthat's thebasicconstructofsymplemonicmotionasweusetheequation f equalsmawhichisthenconvertedtothesecondorderdifferentialequationintermsofomegawhichistheangularfrequencyorangularspeedoftheoscillatormotion.