Nomatterhowmanyfoldscometogetherat a point, and I'm gonnashowyou a buildingblockoftestrelations, it's called a twistbecausethatcentersquare, as I unfoldittwistittwists.
It, rotatesif I hadanothertwistinthesamesheetofpaper, I canmakethesefoldsconnectwiththat.
同じ紙にもう1本ひねりが入っていれば、そのひねりと折り目をつなげることができるんです。
Thesefieldsconnectwiththat.
これらの分野は、それとつながっています。
Andif I hadanotheroneuphere, I canmakeallthree.
そして、ここにもう1つあれば、3つとも作ることができるんです。
Andif I had a squarearrayandallthefoldslinedup, I canmakebiggerandbiggerarrayslikethesebecausethesearejustverylargetwistsinthiscaseisit's anoctagonratherthan a square.
Whydoesorigamilenditselftosaythistypeofapplicationorigamiapplicationshaveincommonisthatatsomestagethethingisflat, andsowheneveryouneedto, eitherstartfrom a flatstateandthentakeitto a three d stateorconversely, fordeployableislikespace.
Origamiis a reallyeffectivewayofmakingthetransitionbetweenthosestates.
折り紙は、その状態を移行させるのに実に効果的な方法なのです。
Anotheraspectoforigamiorigamimechanismsthathaslentitselftomanydifferentusesisthefactthatit's scalablewhenyouhaveanorigamicreasepatternlikethemirrorAriusedsolarpaneldeploymentThetypeofmotionthatyouseehappeningherewillhappen, whetherthisison a pieceofpaperthat's smalllikethis, orin a largerscale, orevenon a smaller, smaller, smaller, smallerscale.
It's somethingwe'vetalkedabout a littlebitthatwithalltherichnessofbehavioroforigamifrom a flatsheet, itseemslikethereoughttobeanequallyrichworldofthingsthatdon't startflatbutarestillmadefromflatsheetsoflike a conebystableproperties.
Thethingthat I think I'm themostexcitedaboutcomesfrommath, mainlywhen I lookatorigami, when I lookatalltheseapplicationsarejustallthesedifferentorigamifolds.