Placeholder Image

字幕表 動画を再生する

  • MAREN: So if you watched our previous episode on how batteries work,

    前回の動画では電池の仕組みと その複雑さについて話した

  • you'll know that batteries are complicated.

    多様な形と大きさ 容量があり あらゆる物に内蔵されている

  • They come in all shapes, sizes, charge capabilities,

    標準を定めたバッテリー技術といえば―

  • and we use them in everything.

    リチウムイオン電池

  • And if there's one battery technology that sets the gold standard,

    エネルギー貯蔵に優れた 唯一無二の電池で―

  • it's the lithium-ion battery.

    小さくて軽いデザイン

  • These batteries are one of the only types

    [番組ホスト マレン・ハンスバーガー]

  • to pack powerful energy storage

    未来のバッテリー技術には―

  • in a small and lightweight design.

    この電池の利点を上回る設計が必要よ

  • So, when designing battery technologies for the future,

    リチウムイオン電池は 世界市場を支配してるけど―

  • the challenge is to improve upon the advantages

    改良の余地は大いにあるの

  • that the lithium-ion battery already has.

    例えば出力や容量

  • Because even though lithium-ion batteries

    コストや寿命 そして安全性

  • currently dominate the global battery market,

    技術を向上させるうえで 最も期待できる設計は―

  • there are quite a few things about them that could be improved,

    リチウムシリコン電池

  • like power output, energy capacity,

    リチウム硫黄電池

  • cost, lifespan, and safety.

    全固体リチウムイオン電池

  • Now some of the most promising designs

    そして それらの組み合わせ

  • for giving lithium-ion battery technology a boost

    アノードとカソード 電解質に使う物質の変更は―

  • are the lithium-silicon battery,

    まさに科学者が行ってきた

  • the lithium-sulfur battery,

    では これらが未来の電池になるために 必要なものとは?

  • solid-state lithium-ion batteries

    電池の設計の少しの違いが―

  • and one that's a common nation of approaches.

    [デレク・ミューラー]

  • And changing out the materials used

    電圧と容量に大きな影響を及ぼす

  • to make anodes, cathodes and electrolytes

    14個のセルを持つ 手作りのバッテリーを用意した

  • is exactly what scientists have been doing.

    材料は製氷皿と鋼のネジ

  • But what is it gonna take for one of these

    銅線と1対の導線 そして電圧計だ

  • to become the new battery of the future?

    原理としては 個々の部屋が セルになっている

  • It's important to note that a simple change

    銅がカソードの役割で電子を受け取り―

  • in a battery's design can significantly affect

    鋼がアノードとして電子を失う

  • its voltage and storage capacity.

    そして塩水が電解質として電荷の流れを作る

  • Here I've made a really simple homemade battery

    じゃあ電圧計につないで値を読み上げるよ

  • with 14 cells using an ice cube tray,

    約200ミリボルトだ

  • steel screws, copper wire, a couple electrical leads,

    では 電解液を変えると どうなるだろう

  • and this voltmeter.

    お酢では?

  • And the way this works is that each little ice cube tray

    レモン汁では?

  • is its own battery cell.

    どれもバッテリーの電圧と容量に

  • So you've got the copper acting like the cathode.

    重大な影響を与え得るんだ

  • It's gaining electrons.

    まずはシリコンアノード電池

  • The steel is acting as the anode.

    アノードはセル内の負の電極よ

  • It's losing electrons.

    前回 話したように―

  • And the salt water is acting as my electrolyte,

    リチウムイオンのアノードの素材は 黒鉛が一般的

  • allowing that flow of charges.

    黒鉛の構造はリチウムイオンを 効率的に蓄えられる

  • Now, when I hook it up to the voltmeter,

    でもアノードに蓄えられる量には 上限があって―

  • you can see I am reading a voltage of around 200 millivolts.

    それが電池の容量を決める

  • Now, what I'm interested in is what would happen

    リチウムイオンの吸収と保持の点で シリコンは黒鉛より優秀よ

  • if we changed out the electrolyte solution

    そのため 電池は小型化し エネルギー効率が上がり―

  • to the, say, vinegar.

    安価になる

  • Lemon juice.

    もちろん問題もある

  • So all these sorts of things can make a significant impact

    シリコンは充電中にリチウムに触れると 急激に膨張しやすく―

  • on the voltage and the storage capacity of the battery.

    電池が放電する時に収縮する

  • MAREN: First up, silicon anode batteries.

    膨張と収縮を繰り返せば 電池の寿命は縮み―

  • Remember that anodes are the negative electrode within a call?

    有用性も減る

  • Well, like we talked about in the last episode,

    エノビクスの研究者は この課題に取り組んでいる

  • the current most popular anode material

    [エノビクスCEO ハロルド・ラスト]

  • in lithium-ion cells is graphite.

    膨張と収縮を制御します

  • This is because graphite's structure helps keep

    我々の特許の3次元構造で とても薄いステンレスを電池に組み込めば―

  • those lithium ions efficiently stored in the anode.

    シリコン膨張を抑制する均一な力を 電池にかけられます

  • But there is a maximum amount of lithium-ions

    充電と放電どちらの際にもです

  • that can be stored in the anode,

    アノードが注目される一方で―

  • and that determines the cell's capacity.

    カソードに目を向け 開発されたのが リチウム硫黄電池

  • And as it turns out,

    リチウムは単体だと不安定な物質で

  • silicon does a much better job than graphite

    [オクシス・エナジーCEO ヒュー・ハンプソン・ジョーンズ]

  • at absorbing and holding lithium-ions.

    空気や水にも反応します

  • And this means batteries can be made smaller,

    オクシスの科学者が取り組むのは―

  • more energy-efficient, and cheaper.

    硫黄という電気を通さない とても安価な物質です

  • But, of course, this does all come with a catch.

    硫黄をリチウムの周りで 難燃剤として使用しました

  • Silicon anodes have a tendency to dramatically expand

    もし空気や水がリチウムに影響しても―

  • when encountering lithium during charging.

    熱暴走や発火 爆発が 起きないようにするためです

  • And those anodes also then shrink

    シリコンアノードと同様 硫黄カソードは―

  • when the battery discharges.

    通常のコバルトのカソードより リチウムイオンを吸収する

  • And this repeated expansion and contraction

    低コストなうえ エネルギー密度が高く―

  • shortens the lifespan of the battery,

    リチウムイオンと比べて安全

  • and ultimately, its usefulness.

    リチウム硫黄電池の決め手の1つは―

  • But researchers like those at Enovix,

    リチウムイオン電池より 50~60%軽量なことです

  • are aiming to fix this problem.

    巨大な電池で走るバスを例とします

  • We don't eliminate anode expansion and contraction,

    リチウム硫黄の技術に 取り替えられれば―

  • but we do control them.

    重量を減らすことができて 走行距離が長くなります

  • Propendent 3D cell architecture

    再生可能な交通システムの 大きな転換点となるでしょう

  • enables us to integrate

    リチウム硫黄電池は まだ完璧でなく―

  • a very thin stainless steel constraint

    多硫化リチウムの生成という課題がある

  • into our battery design.

    シャトル効果として知られてる

  • This applies a uniform force around the battery

    硫黄の電極も 膨張と収縮のサイクルを持ち―

  • to constrain the silicon expansion within the cell.

    バッテリー効率や出力密度 エネルギー密度に影響する

  • during the charging cycles and during discharge.

    解決策がアノードでもカソードでもなく―

  • MAREN: While some researchers have set their sights on the anode,

    電解質なら?

  • others are experimenting with the cathode

    ここで全固体電池の登場よ

  • with one innovation being lithium sulfur cells.

    固体の電解質には歴史があり―

  • Lithium on its own is a very volatile substance.

    安全性の向上が約束されていて 未来の電池候補として人気がある

  • It reacts to air, it reacts to water.

    高分子固体は極限状態にも耐えるの

  • So what the OXIS scientists have done

    熱せられれば液体のようになり 炎の中でも安全に機能する

  • is taken sulfur as a non-conductive, very cheap material.

    研究者の中には 全固体電池で 電気自動車の航続距離が―

  • and used the sulfur to act as a fire retardant

    805キロ以上になると言う人も

  • around lithium metal,

    自由に想像してみよう

  • so that if air or water impacts lithium metal,

    ワールドソーラーチャレンジの出場車に 全固体電池を搭載すれば―

  • thermal runaway, fire, explosion, doesn't take place.

    航続距離が伸びるかも

  • Sulfur cathodes, like their silicon anode counterparts,

    では全固体電池の弱点は何か?

  • can absorb more lithium ions

    液体の電解質と違って 電極の隅々までは接触できないため―

  • than the typical cobalt-based cathodes.

    電極間のイオンの移動と 必要な電流の生成が難しくなる

  • offering a reduced battery cost

    でも これまでの革新技術を組み合わせれば?

  • with increased energy density and improved safety

    我々は液体の電解質から 固体のリチウム硫黄へ―

  • compared to lithium-ion batteries.

    転換できたのです

  • HUW: Because one of the key factors

    削減の議論があるのは―

  • of lithium sulfur

    ディーゼルエンジンのトラックやバス

  • is that it is 50 to 60% lighter than lithium-ion.

    そして航空機が消費する加鉛ガソリン

  • Now, if you take a bus with a very large battery,

    どれも人間が出す最大の汚染物質です

  • if you can replace that technology with lithium-sulfur

    全固体電池は その達成を より現実的なものにしてくれます

  • and you reduce the weight and still

    オクシスはソーラーカー市場に 参入してないけど―

  • extend the distance covered,

    代わりに 航空機や船舶 電気自動車に注力している

  • then you have a major breakthrough

    500ワット時毎キログラムという エネルギー密度が達成間近で―

  • in the renewable transportation systems.

    600ワット時毎キログラムを次の目標に掲げてる

  • But lithium-sulfur cells are still not quite perfect

    本質としては 将来 こうした電池で―

  • because they face the challenge

    電気自動車が充電1回で 1,000キロ走る可能性があるということ

  • of lithium-polysulfide formation,

    商業的に最も進出している テスラの パナソニック製リチウムイオン電池は―

  • or what's known as the polysulfide shuttle.

    航続距離531キロなので約半分

  • The sulfur electrode also expands and contracts

    どの電池の革新技術も印象的だった

  • as it cycles, which results in a loss of battery efficiency

    でもソーラーカーの普及には―

  • and power and energy density.

    高いエネルギー密度とバッテリー効率の 強力な蓄電システム

  • But what if the answer isn't in the anode or the cathode?

    そして雨でも長距離を走れる性能が必要

  • What about the electrolyte?

    これを達成できるものは市場になく 開発もされてない

  • Well, that's where solid state batteries come in.

    だから ワールドソーラーチャレンジのような 大会が必要よ

  • Solid state electrolytes have been around for a while

    こうした乗り物を作る時 人は限界まで技術を押し上げる

  • and have recently caught on

  • as a contender for future batteries

  • because of their promise of improved safety.

  • But solid state polymers can better withstand extreme conditions.

  • So when heated, they behave like liquids,

  • but they can operate without the danger of bursting into flames.

  • Some researchers believe that solid state batteries

  • could even give electric vehicles

  • over 500 miles of range.

  • And if we really let our imaginations run wild,

  • using solid state batteries in solar powered vehicles

  • like the ones that compete in the World Solar Challenge

  • could potentially lead to even longer ranges.

  • Now, what's the downside to these solid state batteries?

  • Well, unlike liquid electrolytes,

  • they can't stay in contact

  • with every bit of the electrodes all the time.

  • And this makes it harder for the ions

  • to move between electrodes

  • and create that flow of electricity that we need.

  • But what if we were able to combine

  • a few of these innovations that we've already talked about?

  • We could now make a transition

  • from liquid electrolyte to solid state lithium sulfur.

  • And I'm talking about removing the diesel trucks, diesel buses,

  • the lead based fuel that our aircraft consume.

  • These are the biggest pollutants that we've got on the planet,

  • and solid state is certainly the phenomenon

  • that will render those achievements more realistic.

  • MAREN: So OXIS Energy is currently not in the solar car market,

  • but is instead focusing on aerospace,

  • marine vessels, and electric vehicles.

  • They're close to achieving an energy density

  • of 500 watt-hours per kilogram

  • with their battery,

  • and have already set a new target

  • of 600 watt-hours per kilogram.

  • Essentially, that means a battery like this in the future

  • could be capable of powering an electric car

  • for 1,000 kilometers on a single charge.

  • By comparison, Tesla's Panasonic lithium-ion battery cells,

  • which are currently the most commercially advanced,

  • are about half as energy dense.

  • So all of the battery innovations we've covered

  • are definitely impressive.

  • But if we want more solar vehicles on the roads,

  • we're gonna need a powerful battery storage system

  • with high energy density, high efficiency,

  • and the ability to last long on the road, rain or shine,

  • because currently, none of the options on the market

  • or even in development totally do the job.

  • That's why it's important to have events like the World Solar Challenge,

  • 'cause when creating a vehicle like this,

  • you're pushing technology to its limit.

MAREN: So if you watched our previous episode on how batteries work,

前回の動画では電池の仕組みと その複雑さについて話した

字幕と単語

ワンタップで英和辞典検索 単語をクリックすると、意味が表示されます