Placeholder Image

字幕表 動画を再生する

  • MAREN: Lithium-ion batteries are found

    リチウムイオン電池は 電子機器に広く使われている

  • in almost every portable electronic device.

    スマートフォンやノートパソコン

  • They're in smartphones, laptops, and even in our cars.

    自動車にも

  • In fact, batteries are one of the keys to realizing

    電池は再生可能エネルギー100%の 未来を実現する鍵なの

  • a 100% renewable energy future.

    2018年時点で 500万台以上の電気自動車が

  • In 2018, there were over five million electric cars on the road,

    ハイブリッド車を含めて 普及しており

  • which includes both hybrid vehicles

    その人気は高まり続けている

  • and fully battery powered electric cars.

    私たちの生活に欠かせない 電池の仕組みと―

  • And their popularity only continues to grow.

    リチウムイオン電池の特長に迫る

  • Since batteries are powering more and more of our lives,

    電池の種類はさまざまで―

  • why don't we explore how exactly batteries work,

    それぞれ素材も形状も充電能力も異なるが

  • and what makes lithium-ion batteries so special?

    基本的に 電池は電気化学セルでできている

  • Now, there are a bunch of batteries out there,

    そして電気化学セルの素材が―

  • made of different materials, in different shapes,

    電池の両端にあるプラスとマイナスを作り出す

  • and with different charge capabilities.

    電気化学セル内には 電気を作るための主要部分がある

  • But on the most basic level,

    電池の両端を正と負に分ける2つの電極よ

  • batteries are composed of electrochemical cells.

    負極はアノードで

  • And the materials that make up an electrochemical cell

    正極はカソードと呼ばれる

  • can create the positive and negative sides

    アノードとカソードの間には電解質があり―

  • you see on the either end of that battery.

    荷電イオンを2つの電極へ運ぶ 大事な役割を担っている

  • Inside a single electrochemical cell,

    電解質は液体か個体

  • there are a few main parts

    [番組ホスト マレン・ハンスバーガー]

  • that help the cell create electricity.

    化学反応を妨げない素材ね

  • Two electrodes, which are the materials

    中央には―

  • that make the battery ends positive or negative.

    セパレーターがあり 正極と負極を切り離している

  • The negative side is called the anode,

    懐中電灯をつけるとしよう

  • and the positive side is called the cathode.

    外部回路でアノードと電球 懐中電灯とカソードをつなぐ

  • The next part is called the electrolyte,

    回路に電荷を加えると―

  • which sits between the anode and the cathode.

    アノードと電解質の間に化学反応が起きる

  • And this is important, because it's what enables

    すると電子が放出され アノードにイオンが残る

  • charged ions to flow between the two electrodes.

    放出された電子は電気として回路を通り カソードへ移動する

  • The electrolyte can be liquid or solid,

    同時に電解質は アノードに残されたイオンを―

  • or any material that helps the chemical reaction flow smoothly.

    セパレーターを通して カソードの電子の元へ運ぶ

  • And finally, there's a semipermeable layer

    この一連の過程を―

  • that keeps everything separate

    酸化還元反応と呼ぶ

  • so that we can control the reaction.

    レドックス反応とも言われるわ

  • Now, if we wanted to power, say, a flashlight,

    酸化とは物質が電子を失うこと

  • you would add an external circuit

    還元は電子を受け取ることよ

  • that connects the anode to the light bulb

    電池性能は―

  • and the flashlight to the cathode.

    エネルギー密度と出力密度で決まる

  • When we add a charge to this circuit,

    2つの違いを明らかにする いい例えがある

  • we initiate a chemical reaction

    マグカップと口の狭い大きな水差しを想像して

  • between the anode and the electrolyte.

    水がエネルギーだとして両方を水で満たす

  • This releases electrons

    水差しは容量が大きく―

  • and leaves leftover ions at the anode.

    より多くの水を蓄えられる

  • These released electrons

    でも水を注いでみると―

  • will travel through our circuit as electricity,

    マグカップのほうが ずっと速く水を排出する

  • ending up in the cathode.

    マグカップが高出力ということね

  • At the same time, the electrolyte

    エネルギー密度は 単位質量あたりのエネルギーの量よ

  • will help the ions they left behind at the anode

    エネルギー密度が高ければ―

  • flow through the semipermeable barrier

    小さな質量に 大きなエネルギーを蓄えられる

  • and meet the electrons at the cathode.

    一方の出力密度は―

  • This whole process is called

    単位質量あたりの出力のこと

  • a reduction-oxidation reaction,

    出力密度が高ければ―

  • also commonly referred to as a redox reaction.

    短時間で多くのエネルギーを放出できる

  • Oxidation is where a material loses electrons,

    高エネルギー密度で 低出力密度のデバイスは―

  • and reduction is when it accept electrons.

    大量のエネルギーを蓄えられ 減りが遅いということ

  • Now, when we talk about battery performance,

    例えば あなたのスマートフォン

  • we have to consider both energy and power density.

    バッテリーは小さいけど持ちがいい

  • And a good example to highlight the difference

    あまり電池を消費しないわ

  • between energy and power density,

    すべてのアプリを開いて―

  • is comparing a mug to a large jug

    動画を再生したって平気

  • with one of those narrow bottlenecks.

    後で充電は必要だけどね

  • If your water represents energy,

    スマートフォンの多くは リチウムイオン電池を使う

  • and you fill both vessels with water,

    電池セルでの化学反応には 素材が重要よ

  • you see that the jug has a greater overall energy storage.

    リチウムイオンセルの場合 アノードもカソードも―

  • It can simply hold more water or energy.

    リチウムイオンを吸収する素材でできてる

  • But if we were to pour that water out,

    イオンをしっかり閉じ込めて逃がさない

  • well, then it's clear that the water or that stored energy

    一般的にアノードの素材は黒鉛

  • comes out of the mug at a much faster rate,

    その炭素原子の構造により―

  • demonstrating that the mug has a higher power output.

    アノードに正リチウムイオンが蓄えられる

  • Energy density is defined

    カソードの素材はコバルト酸リチウムで

  • as how much energy is within a given mass.

    やはりリチウムイオンを蓄えやすい

  • So if something has a high energy density,

    これらの素材こそが鍵となる

  • it means it can store a lot of energy

    同じ大きさでも セルに多くのエネルギーを蓄えられる

  • in a small amount of mass.

    リチウムイオン電池は充電も可能よ

  • Power density, on the other hand, is defined as,

    仕組みは普通の電池とほとんど変わらない

  • you guessed it, how much power is within a given mass.

    セルが使われると アノードから電子が放出される

  • So when something has a high power density,

    電子は外部回路を通ってカソードへ

  • it can output large amounts of energy

    電子が電気として回路を動く間―

  • in a short amount of time.

    残されたリチウムイオンは 電解質を通りカソードへ移動

  • So if you have a device with high energy density

    デバイスの充電が開始されるまで―

  • and low power density,

    その場に とどまり続ける

  • it means that the device can store a lot of energy

    次は逆方向へ同じことを繰り返す

  • and doesn't use it up quickly.

    カソードに使う金属酸化物は―

  • A good example of this is your very own phone.

    必要なエネルギー密度によって異なるわ

  • It actually has a small battery,

    スマートフォンにはコバルト酸リチウム

  • but can run for a long time.

    テスラの車などにはリチウムニッケル コバルトアルミニウム酸化物

  • Now, you may notice your phone doesn't really generate that much power.

    テスラの車がこんなに特殊な―

  • I mean, it probably has enough power

    リチウムイオン電池を使ってるとは 知らなかったかもね

  • to have all of your apps open while streaming

    電気自動車は ずっと進化し続けてきた

  • cool science videos like this one,

    でも転換点を迎えたのは最近だ

  • but then you'd probably have to recharge it pretty soon afterwards.

    ガソリン自動車に戻れない

  • You'll find that most phones today

    [デレク・ミューラー]

  • use lithium-ion batteries,

    その理由の1つは革新的なバッテリー技術

  • and materials are important

    電気自動車の内部は 内燃機関の車と全く異なる

  • for chemical reactions in battery cells.

    ここには何もないよね 物を入れるスペースだ

  • So, in the case of lithium-ion cells,

    この車の電池は個別セル

  • both the anode and the cathode are made of materials

    セルはモジュールに同梱され 電池パックを形成し―

  • that can enhance their ability to absorb lithium ions.

    車の下部に搭載されている

  • This means the ions are held

    とても重いから車は低重心だ

  • inside the structure of the material,

    これらは見事なリチウムイオン電池だ

  • and they can't get loose.

    テスラのモデルSは

  • In most cases, the anode is made of graphite,

    7,000個の電池セルを搭載していて

  • which has this structure of carbon atoms.

    1度の充電で―

  • This structure allows the graphite anode

    595キロメートル以上を走行できる

  • to store positive lithium ions,

    次に航続距離が長いのは ヒュンダイの車で415キロメートルよ

  • while the cathode, typically made of lithium cobalt oxide,

    現時点ではテスラが群を抜いている

  • has a structure that also is conducive

    エネルギー密度と出力密度の面でもね

  • to storing lithium ions.

    比較的 手頃な価格になってきたけど

  • These enhanced materials are key

    リチウムイオン電池には欠点もある

  • for a couple of different reasons.

    パワーが弱くコストが高いし―

  • It means that the cell can store more energy

    劣化する素材でできている

  • while remaining small, and that's energy density.

    またリチウムイオン電池には 発火の危険性がある

  • And this also means the battery is rechargeable.

    さらなる改善が必要ね

  • When we want to use a lithium-ion battery,

    そのためには どうすればいい?

  • it works similarly to our other batteries.

    次の動画で最新の取り組みを紹介する

  • As the cell gets used,

  • those electrons are freed from the anode,

  • and they shuffle through an external circuit to the cathode.

  • While the electrons move through the circuit as electricity,

  • the lithium ions left behind

  • travel through the electrolyte to the cathode.

  • And there, they get absorbed and stay put

  • until the device that uses the battery

  • is plugged in and begins the charging cycle.

  • Then they all do the whole process again, but backward.

  • Also, depending on how much energy density you need,

  • the cathode can be created with different metal oxides

  • for different applications.

  • For example, lithium cobalt oxide is what's used in our phones,

  • while something like a Tesla vehicle

  • uses lithium nickel cobalt aluminum oxide.

  • So you were probably aware

  • that electric cars use lithium-ion batteries,

  • but maybe you didn't know that Tesla cars used

  • such a different kind of lithium-ion battery.

  • DEREK: Electric vehicles have been developing for decades now,

  • but they only sort of hit a tipping point recently.

  • I've been driving one for a couple of years,

  • and I just wouldn't go back.

  • And part of that is due to their

  • very innovative battery technology.

  • Electric vehicles look pretty different under the hood

  • from internal combustion engine cars.

  • I mean, there's not much to see here,

  • it's just a storage space.

  • The batteries that this car uses are individual cells,

  • which are packaged together into modules,

  • and modules joined together to form the battery pack,

  • which actually sits down here

  • along the bottom of the vehicle.

  • And it's really heavy, so it gives the car

  • a low center of gravity.

  • Now, those batteries are pretty impressive.

  • Lithium-ion.

  • In the Model S version of this car,

  • there are 7,000 of them stuck together,

  • and that can give these cars a range

  • over 595 kilometers.

  • The next most efficient electric cars on the market

  • only have a range of about 415 kilometers.

  • And this huge gap demonstrates that Tesla

  • is leading the charge, at least for now,

  • in terms of energy density and even power density,

  • in a way that makes those electric cars

  • relatively affordable for a mass market.

  • But lithium-ion batteries do have their downsides.

  • They're not super powerful, they're expensive,

  • the materials they're made from are unsustainable,

  • and their electrolyte can be flammable,

  • making the product potentially hazardous.

  • So clearly there are improvements to be made.

  • But what's it gonna take to make an even better battery?

  • Check out our next episode

  • to learn what scientists are working on today.

MAREN: Lithium-ion batteries are found

リチウムイオン電池は 電子機器に広く使われている

字幕と単語

ワンタップで英和辞典検索 単語をクリックすると、意味が表示されます