Placeholder Image

字幕表 動画を再生する

  • MAREN: We've broken down solar panels,

    ソーラーパネルを分析し ソーラーカーを検証してきた

  • gone under the hood of a solar race car,

    2章にわたり バッテリー技術の話もしたね

  • and explored battery technology in not one, but two episodes.

    今回は設計を掘り下げる

  • So now it's time to dig into an element of design

    レースカーの話だけじゃない

  • that's not just important to race cars,

    あらゆる乗り物や設計物にとって 重要な要素

  • but every vehicle, or really anything and everything

    それが空気力学

  • that's designed and engineered.

    今回のテーマは これよ

  • I'm talking about aerodynamics.

    “現在のソーラーカーは 空気力学の未来につながるのか?”

  • In this chapter of our Learning Playlist,

    空気力学とは 空気中の物体の動きの研究よ

  • we're asking, could today's solar race cars

    空気力学的な設計とは?

  • drive us toward a more aerodynamic future?

    [番組ホスト マレン・ハンスバーガー]

  • Simply put, aerodynamics is the study

    飛行機の設計を例にとると...

  • of how an object moves through the air.

    世界一の画家じゃないから許してね

  • But how do you engineer something to be aerodynamic?

    飛行には4つの力が働いてる

  • Now if we take a plane design as an example...

    まとめて説明するね

  • Well, forgive me because I'm [CHUCKLES] not the best artist in the world.

    1つ目は重力

  • But we have four forces of flight,

    物体に下向きにかかる力のことよ

  • say that three times fast, to consider here.

    それに対抗する上向きの力が揚力

  • The first is weight.

    物体の下の空気によって生じる

  • That is the downward force exerted on the object by gravity.

    それから推力

  • The opposing force to that to that is lift.

    物体を前進させる力よ

  • That's the upward push,

    飛行機の場合はエンジンのこと

  • typically provided by the air underneath the moving object.

    最後が抗力

  • Then there's thrust.

    推力と反対方向に働くの

  • That's the forward force that moves an object forward

    物体の動きに抵抗する力よ

  • like, in the plane's case, the plane's engines.

    飛行機や宇宙船はもちろん ソーラーカーにも

  • And then finally, there's drag.

    同じ4つの力が常に働いてる

  • and that goes in the opposite direction to thrust.

    これはブラックマンバの3Dモデル

  • It's the force that resists an object's motion.

    2019年のソーラーカーレースに参加した スタンフォード大学のレースカー

  • Now, whether we're talking about planes,

    この設計には重力を考慮する必要があったの

  • spacecraft or solar race cars,

    軽量の車を目指していたからよ

  • the same four forces are always at play.

    車が軽くなると

  • This is a 3-D printed model of Black Mamba,

    より少ない力で動ける

  • the Stanford Solar Car Project's solar racer

    ブラックマンバの重さは 約180キロになった

  • for the 2019 World Solar Challenge.

    車としては 本当に軽量ね

  • When designing Black Mamba,

    トラクションとグリップも 操縦と勝敗の鍵になる

  • the Stanford team had to account for weight.

    揚力を弱めてくれるの

  • They wanted to keep the car as light as possible.

    レースカーは高速で軽量だから 浮き上がる恐れがある

  • And that's because, the lighter the car,

    高さがある幅広のタイヤを使い

  • the less force it takes to move the car.

    特製のスポイラーで車体周りの風向きを変えるの

  • Now, the real Black Mamba tips the scales

    車の接地力を高めるために 考慮された設計よ

  • at roughly 180 kilograms.

    次は真っすぐに進む推力

  • As far as cars go, that's really light.

    ボンネットの中のエンジンが 車を前進させる力を生むの

  • And traction and road grip are also crucial

    化石燃料を動力源とする車の場合 出力は馬力で表され―

  • to maneuvering and winning races,

    電気または電池式の車は キロワットで表される

  • because they can counteract lift.

    1キロワットは約1.34馬力よ

  • See, race cars are often so fast and so light,

    ブラックマンバのエンジンは 48Ahのリチウムイオン電池で

  • they're at risk of literally taking off.

    テスラが使っているものよりも コンパクトでパワーは小さいの

  • So, using taller, wider tires,

    でも車が軽いから

  • and specially designed spoilers or wings

    このバッテリーでも 最高で時速110キロほどは出るのよ

  • that redirect the air around the vehicle

    最後に抗力

  • often factor into a race car's design

    空気による抵抗力のことで 前進する車に対してかかる

  • to help the vehicle keep in contact with the road.

    抗力の計算式は

  • Then we've got thrust.

    まず抗力係数に空気の密度を掛けるのよ

  • And this one's pretty straightforward.

    次に速度の2乗の1/2を掛け―

  • It's the power pushing the race car forward.

    最後に前面投影面積を掛ける

  • That's typically generated under the hood

    でも この計算式を使うのは

  • by the car's engine.

    NASAやカーレースの技師くらいね

  • Traditionally, with fossil fuel powered vehicles,

    この式から分かるのは

  • this power output is measured in horsepower.

    多くの要素が働いているということ

  • But with electric or battery powered vehicles,

    特に重要なのは抗力係数

  • we can also think of it in terms of kilowatts,

    流れの中を動く物体が受ける抵抗を

  • with one kilowatt equaling roughly 1.34 horsepower.

    数値で表したものなの

  • The real Black Mamba has an engine

    ここでは 物体がソーラーカーで 流れは空気のことね

  • powered by a 45 amp hour lithium-ion battery,

    抗力係数に影響する要素には 物体の形と表面粗さがある

  • which is actually much smaller and less powerful

    車と空気の摩擦の減少に関わるわ

  • than what something like a Tesla uses for its battery.

    2019年のワールドソーラーチャレンジの 動画を見た人は

  • But because the car is so light,

    東海大学のチームを覚えているでしょう

  • Black Mamba can top out at around 110 kilometers per hour.

    滑らかな車体にするため 懸命に取り組んでた

  • even with that battery.

    空気が車体上を滑りやすくするようにね

  • And finally, there is drag.

    シャークスキンという フィルムを使った―

  • That's the resistance caused by air

    チームもあった

  • pushing against a race car as it drives forward.

    空気の流れをよくして 車の空気力学を改善するのよ

  • Now, in order to calculate drag,

    抗力係数の概念は難しい

  • you multiply the drag coefficient

    [デレク・ミューラー]

  • by the density of the air

    身近なもので考えよう

  • times half of the velocity squared

    例えば レンガだね

  • times the object's frontal area.

    抗力係数は約1~1.5

  • Now, don't worry,

    空気抵抗はそれほど小さくない

  • you'll probably never have to use this calculation

    実のところ 空気抵抗が最も小さいのは滴だ

  • unless you're a NASA or NASCAR engineer.

    抗力係数は約0.05

  • This complex equation does give you a sense

    この他には―

  • of how many factors are at play

    1996年のダッジ・キャラバンの 抗力係数は約0.35だ

  • when we talk about drag,

    大きくて表面が粗いレンガは

  • including the all-important drag coefficient.

    空中を動く時 大きな抵抗を受けるの

  • The drag coefficient is the number we use

    滑らかな滴より抵抗は大きくなる

  • to quantify the resistance

    同様に ミニバンが受ける抵抗も

  • that the object encounters when moving through a fluid.

    滑らかなソーラーカーより大きいのよ

  • In this case, our object is our solar race car

    スタンフォード大学のチームは ブラックマンバの抗力係数を公開してない

  • and our fluid is air.

    設計上の数字は公開していない

  • Some other factors that affect drag coefficient

    主に抗力係数だね

  • include the object's shape and surface roughness

    長年 公開は控えている

  • to reduce friction between the car and the air.

    ワールドソーラーチャレンジのような レースでは当然のことね

  • If you watched our documentary series

    チームカーの空気抵抗を 競争相手に教えるのは

  • on the 2019 World Solar Challenge,

    いい考えではないでしょ

  • you may recall that teams

    でもスタンフォード大学は 以前の設計よりも

  • like the one from Tokai University

    空気抵抗が少ないとは答えた

  • worked really hard

    今回初めてシングルフェアリングの―

  • to make their cars seamless and slippery.

    [スタンフォード コーリ・ブレンデル]

  • In an effort to create a smooth flow of air

    流線形ボディーにした

  • across their race car,

    初めての試みだった

  • some teams even use an innovative film wrap coating

    ずっとマルチフェアリングで カタマラン型だったの

  • called "shark skin" to better redirect air flow

    マルチフェアリングのデザインが 数十年間 主流だった

  • and improve their car's aerodynamics.

    1987年の初開催までさかのぼって

  • Now, the concept of drag coefficient

    全優勝チームが マルチフェアリングだったの

  • can be a little bit abstract.

    ネタバレだけど 去年の優勝も...

  • So it might be useful to think of the drag coefficients

    マルチフェアリングのカタマラン型

  • of some everyday objects,

    [アゴリア]

  • like a brick.

    流線形のデザインより空気抵抗が大きくても

  • A brick has a drag coefficient of about one.

    なぜマルチフェアリングが勝つの?

  • Not very aerodynamic as you'd guess.

    流線形と比べて不利な点は2つ

  • In fact, the most aerodynamic shape that we know

    車輪同士を近づければ 空力性能が向上する代わりに

  • is the teardrop

    ひっくり返りやすくなる

  • with a drag coefficient of about 0.05

    もう1つの問題はソーラーパネルのサイズだ

  • Think about some other objects, the...

    シングルフェアリングの流線形に比べて

  • A 1996 Dodge Caravan

    カタマラン型は幅が広い

  • has a drag coefficient of about 0.35.

    大きなソーラーパネルを置けるでしょ

  • MAREN: A brick with its blocky shape and its rough surface

    安定性を保ちつつ よりエネルギーを生む能力が

  • encounters greater resistance

    勝利の組み合わせなのね

  • when it's moving through the air

    流線形は空気の流れと抗力を改善し

  • than, say, a smooth aerodynamic teardrop.

    効率性と速度を大きく向上してくれる

  • In the same way, a boxy minivan

    それでも優勝はできないのよ

  • encounters greater resistance

    今のところはね

  • than a sleek solar racer

    ソーラーカーだけでなく 多くのレースカーが

  • with a lower drag coefficient.

    ミニバンより抗力係数が高くなってるの

  • Now, the Stanford solar team

    F1レースでは 故意に抗力係数を増してる

  • wouldn't share Black Mamba's actual drag coefficient.

    揚力を弱め トラクションと操縦性を高めるためよ

  • Yeah, so our team doesn't share some numbers

    スタンフォード大学は 流線形のデザインのままで

  • just in our design.

    空気抵抗の改善に取り組み続けてる

  • It's mainly just the drag coefficient.

    目標は 次の ワールドソーラーチャレンジ優勝よ

  • It's kind of a long-standing thing

    でも革新はレースのためだけじゃない

  • within the solar teams.

    だから最後となる次回のテーマは

  • I get it. I mean, in a race as competitive

    “ソーラーカーは みんなにとって 将来の実現可能な選択肢か”よ

  • as the World Solar Challenge,

  • letting the competition know

  • just how aerodynamic your car is

  • is, you know, probably not a good idea.

  • But the Stanford team did confirm

  • that their new racer is sleeker

  • and more aerodynamic than the past designs.

  • So the driving design change that we had

  • was going with a single fairing bullet style aero body.

  • And that was the first time we ever tried doing

  • a single fairing aero body.

  • We've always done, like, a multi-fairing car.

  • Usually that's a catamaran.

  • MAREN: The multi-fairing design

  • has been widely used

  • by many solar racers throughout the decades,

  • including all of the winners of the World Solar Challenge

  • going all the way back to the very first race in 1987.

  • And, spoiler alert,

  • the winner of last year's race,

  • you guessed it, another multi-fairing catamaran design.

  • So why is a multi-fairing design so successful,

  • even though it may not be

  • as aerodynamic as the bullet design?

  • I think there is two main disadvantages to a bullet car.

  • In terms of stability, it improves the aerodynamics

  • if you have the wheels closer together.

  • but the trade-off to that

  • is as you move your wheels closer together,

  • it's a lot easier to tip your car over.

  • The other problem is with the array size.

  • MAREN: Compared to a sleeker, single fairing bullet car,

  • the catamaran is wider

  • and it has more room to fit a larger solar array.

  • This ability to generate more energy

  • combined with greater stability

  • tends to make for a winning combination.

  • So while the bullet design does allow

  • for a smoother air flow and improved drag,

  • which can translate into greater efficiency

  • and potentially faster speeds,

  • it hasn't quite translated into taking home the trophy.

  • At least not yet.

  • Fun fact here. Many race cars, not just solar racers,

  • are actually designed

  • to have a higher drag coefficient than minivans.

  • Yeah, that's right. Formula One designers

  • deliberately increase drag

  • to help counteract upward lift

  • and improve traction and maneuverability.

  • The Stanford Solar Car team plans to stick

  • with Black Mamba's sleek bullet design

  • while continuing to improve

  • their solar racer's aerodynamics.

  • And their goal is winning the next World Solar Challenge.

  • But the drive to innovate goes far beyond the next race.

  • So, in the final chapter of our Learning Playlist,

  • coming up next...

  • Will solar cars really be a viable option

  • for all of us in the future?

MAREN: We've broken down solar panels,

ソーラーパネルを分析し ソーラーカーを検証してきた

字幕と単語

ワンタップで英和辞典検索 単語をクリックすると、意味が表示されます