I'm sorrythat I didn't evennotice I I learnedfromsomebodyelse's postingthatoneofthenumbersofprime, so I hadn't noticedthatwefoundthreeinjuresWho's Cube?
Some 2 33 Thisnumberwasimmortalizedin a paperbyBjornPutin.
Now, onthefaceofit, thisis a threedimensionalproblem.
Okay, we'vegotthreevariablestosolvefor X, y and Z.
Andifyoujustwentthroughallpossibilitiesuptobethatsomewhereontheorderofbecubednumberstocheck, I saidyoucanimagine B is a 1,000,000.
Toputthingsinperspective, yoursmartphonecoulddo a 1,000,000 thingsintheblinkofaneye.
A 1,000,000 calculationslikethis.
Okay, butif I say a 1,000,000 cubedallright, that's intherealmofpossiblebutveryexpensive, um, todoonmoderncomputers.
Sothisisactuallyverywasteful.
Soit's nothardtoseethatinthesearchrange.
There's loadsofplaceswherethere's nopointinlookingOkay, Soif I imaginethat X, Y and Z areold, positiveandlarge, andofcourse, there's nowaythat, uh, someoftheircubesisgonnabe a smallnumber.
Itturnsoutthat l Keysalgorithmismostefficientwhenyou'relookingfor a solutionforlotsofnumbers, um, a CZwewerefor a whileButyoucanseewe'regettingdownto a prettyshortlistatthispoint.
So I startedtothink, Well, maybethereareotherapproachesthatwecouldlookat.
Myapproachusesmorealgebra.
Sowhat I'lldois I'lltakethisequationandthenwe'llmove Z cubedovertotheotherside.
Okay, Sothatgivesus X cubed, plus y cubedequals 33 minus Z cubed.
Thisisnow X plus Y X squaredminus x y.
That's whysquaredequals 33.
MinussaidCute.
Okay, now, whyhave I donethat?
Well, um, wehavethisfactorthatthatweknowisthere.
Okay, I'm gonnagiveus a name.
I callit d sayfordivisor.
Allright, thatonemorestep.
And I promisewe'regettingtotheendofelderbreath.
Let's dividebothsidesby D.
Okay, so I'm gonnahaveontheleftsidejustexpertminus X y plus y squaredrightside 33 minus Z cubedover D.
Nowitprobablylookslike I'vemadethings a lotmorecomplicated, right.
Westartedwiththreevariables.
Nowwebefore, but I wantyoutoimaginefor a momentthatweknowthevaluesof Z andof D.
OrmaybewehavesomeguestsforWell, thatmeansthateverythingintherighthandsideissomething I knowor I cancompute.
Onthelefthandside, I have a quadraticequationwithtwounknowns.
I'vegotonehere, butthere's anotheronethat I usedimplicitlybutdidn't writedown.
Andthat's thisone.
So X plus Y isequalto D.
Allright, sonow I'vegot +22 equationstounknowns.
Weknowhowtosolvethis.
Ormoretothepoint, if I guessvaluesfor Z and D.
I cantellprettyeasilywhethertherearecorrespondingintegervaluesof X and y okay, andthisistheidea.
Wejustgothroughallpossiblevaluesfrizzyand D, andseeifthere's anycorresponding X and y.
Andnowthatagainsoundslikeitshouldbesomethinglike B squared, right, becausethere's twovariables, butthekeyis, once I'vepicked a valuefor Z, thevaluesfor D actuallyquiterestrictedbecausetheyhavetobedeviseer's ofthisnumber 33 month.
Ishecute?
Andtherearen't manyofthose.
Soonceyou'veworkedout, see, youcanworkoutallthepossiblevaluesfor D prettyeasily, andthenjusttryallofthem.
I'velostover a fewthingshere, Soinactualpractice, youdoittheotherwayaround.
Yougothroughvaluesof D, andthenyouworkout Z fromthere.
Butyeah, that's theidea.
In a nutshell.
I uselotsofcomputers, actually, a fewseparateclusterson, andthecomputationthatfoundthesolutionwasthebigcomputerattheUniversityofBristolBlueCrystalphasethree.
Thishappenedwayfasterthan I wasexpecting.
So I startedthis.
I thought I wasinfor, youknow, sixmonthsofcomputation.
Myinitialfearwasthatnothingwouldturnupandthen I'd havetojustifywhy I wasusingsomanyCPUcycles.
Yeah.
Soonas I startedusingcomputerwithin a fewdays, itfoundthesolution.
Infact, hedoessomecalculationsandheshowsthatforsomeofthesesmallnumbers, youwouldexpectthenumbersfromonesolutiontothenexttoincreaseby a factorofmillions.
Okay, sothatmeans, youknow, eachtimeyoufindone, you'regonnahavetowork a 1,000,000 timesharder, um, tofindthenextone.
Soeveryoneofthesenumbersthatdoesn't haveremainderfourorfivewhenyoudivideitbyninewillhaveinfinitelymanysolutionsininfinitelymanywaysofwritingitas a sumofthreecubes.
Didyoudidyoutellyourfamilyaboutthis?
Didyoutellyouwhat?
Yes.
What?
Shesaid, um, shewaswonderingwhysheshouldcare.
Yeah, so I eventoldtheChildrenandtheywereexcited.
And I run a mathclubinmykid's primaryschool.
Andwedid, um, a unitoncubesandaddingupcubesandtalkingaboutthis.
I showedyourvideo.
Youknowyou'regoingtodowiththisnumber.
You'regonnagetittattooedonyourforehead.
Oh, youso I don't evenrememberit.
Butyouhavetomemorize.
Thatwouldbe a goodpartytrick.
Nexttime I come, I wantyoutohavememorizedcomebacktotheseones.