Andtheproblemwiththatisitmeansthenumberofrabbitswouldgrowexponentiallyforever, so I canaddthetermoneminus X torepresenttheconstraintsoftheenvironment.
Andhere I amimaginingthePopulation X is a percentageofthetheoreticalmaximum, soitgoesfrom 0 to 1, andasitapproachesthatmaximum, thenthistermgoestozero, andthatconstrainsthepopulation.
Sothisisthelogisticmap.
X n plusoneisthepopulationnextyearand X andisthepopulationthisyear.
Get 0.61 Thepopulationdropped a littlehititagain 0.619 point 613.617 point 615.616 point 615 Andif I keephitting, enterhere, Youseethatthepopulationdoesn't reallychange.
Whatifwetry C equalsnegativeonemorethanwe'vegotZerosquared, minusoneequalsnegativeonenegativeonesquaredminusoneequalszero.
Andsowe'rebacktozerosquared.
Minusoneequalsnegativeone.
Soweseethatthisfunctionisgonnakeeposcillatingbackandforthbetweennegativeoneandzero, andsoitwillremainfinite, andso c equalsnegativeOneispartoftheMandelbroughtset.
What I findevenmoreamazingishowthisonesimpleequationappliesto a hugerangeoftotallyunrelatedareasofscience.
Thefirstmajorexperimentalconfirmationcamefrom a fluiddynamicsistnamedLibChamber.
Hecreated a smallrectangularboxwithmercuryinside, andheused a smalltemperatureingredienttoinduceconvictionjusttocounterrotatingcylindersoffluidinsidehisbox.
Thiswas a prettyspectacularconfirmationofthetheoryin a beautifullycraftedexperiment.
Butthiswasonlythebeginning.
Scientistshavestudiedtheresponseofoureyesandsalamandereyestoflickeringlights, andwhattheyfindis a perioddoublingthatoncethelightreaches a certainrateofflickering, oureyesonlyrespondtoeveryotherflicker.
It's amazinginthesepaperstoseethebikeforcationdiagramemerged, albeit a bitfuzzy, becauseitcomesfromrealworlddata.
Inanotherstudy, scientistsgaverabbits a drugthatsenttheirheartsintofibrelation.
I guesstheyfeltthereweretoomanyrabbitsoutthere.
I mean, ifyoudon't knowwhatfibrillationis, iswhereyourheartbeatsinanincrediblyirregularwayanddoesn't reallypumpanyblood.
Soifyoudon't fixit, youdie.
Butwhattheyfoundwasonthepathdefibrillation.
Theyfoundtheperioddoublingroutetochaos.
Therabbitstartedoutwith a periodicbeat, andthenitwentinto a twocycle, twobeatsclosetogetherandthenfourcyclefourdifferentbeatsbeforeitrepeatedagainandeventually a period.
Behavior.
No, itwasreallycoolaboutthisstudywastheymonitortheheartinrealtimeandusedchaostheorytodeterminewhentoapplyelectricalshockstotheheart.
Butah, lotofresearchhasgoneintofindingthatoncetheflowrateincreases a littlebit, yougetperioddoubling.
Sonowthedripscometo a time T tip, andeventuallyfrom a drippingfaucet, youcangetchaoticbehaviourjustbyadjustingtheflowrate, andyouthinklikewhatreallyis a faucet.
Well, there's constantpressure, waterand a constantsizeaperture.
Andyetwhatyou'regettingischaoticdripping, sothisis a reallyeasy, chaoticsystemyoucanexperimentwithathome.
Goopen a tapjust a littlebitandseeifyoucanget a periodicdrippinginyourhouse.
Thebikeoccassionscomefasterandfaster, butin a ratiothatapproachesthisfixedvalue.
Andnooneknowswherethisconstantcomesfrom.
Itdoesn't seemtorelatetoanyotherknownphysicalconstant, soitisitself a fundamentalconstantofnature.
What's evencrazieristhatitdoesn't havetobetheparticularformoftheequation I showedyouearlier.
Anyequationthathas a singlehump.
Ifyouiteratedthewaythatwehave, soyoucoulduse X m plusoneequalssine X, forexample, ifyouiteratedthatoneagainandagainandagain, you'llalsoseebyforcations.
In 1976 thebiologistRobertMay I wrote a paperinnatureaboutthisveryequation.
Itsparked a revolutioninpeoplelookingintothisstuff.
I mean, thatpaper's beensightedthousandsoftimes.
Andinthepaper, hemakesthispleathatweshouldteachstudentsaboutthissimpleequationbecauseitgivesyou a newintuitionforwaysinwhichsimplethingssimpleequationscancreateverycomplexbehaviors.
And I stillthinkthattodaywedon't reallyteachthisway.
I mean, weteachsimpleequationsandsimpleoutcomesbecausethosearetheeasythingstodoandthoseofthethingsthatmakesense.
We'renotgonnathrowchaosatstudents, butmaybeweshouldMaybeweshouldthrowatleast a littlebit, whichiswhy I'vebeensoexcitedaboutchaos.
And I amsoexcitedaboutthisequationbecause, youknow, howdid I gettobe 37 yearsoldwithouthearingoftheFeigenbaumConstant?
Eversince I readJamesGreeksBookChaos, I havewantedtomakevideosonthistopic, andnow I'm finallygettingaroundtoit.
Andhopefully I'm doingthistopicjusticebecause I finditincrediblyfascinatingand I hopeyoudotoo.
FastToastsis a UKbasedWebhostingcompanywhosegoalistosupportUKbusinessesandentrepreneursatalllevels, providingeffectiveandaffordablehostingpackagestosuitanyneed.
Forexample, theyprovideeasyregistrationfor a hugeselectionofdomainswithpowerfulmanagementfeaturesincluded.
Theirdatacentersarebasedalongsidetheirofficesinthe U.
K.
Sowhetheryougofor a lightweightWebhostingpackageor a fullyfledgeddedicatedbox, youcantalktotheirexpertsupportteams 24 7 So I wanttothankfasthostsforsupportingveryTASI.