字幕表 動画を再生する 英語字幕をプリント Okay... Hello. Hey. So, this is good, this is good. You - you're working, can you see me? I can see you. Do you know what went wrong in-uh.. during the launch..? Yes - it's not complicated, but, it's a long chain of events.. On august, 21., 2014, two satellites were launched by the European Space Agency. They're called Galileo Satellites 5 and 6. They were intended to become part of the Global Navigation Satellite System, or GNSS. This is the European version of the American GPS systems. Now, after successfully blasting off into space, The satellites were launched with the Russian 5-6 rockets; The final stage of the rocket was set to inject the satellites into circular orbit around 23000 kilometers above the Earth. But that - - is when something went wrong Uhh. there was thermal breach between a line of cold helium, and a line of propellant. So, the propellant, it froze; This caused the failure of the altitude control thrusters. The satellites seemed to have been injected into some random direction. It was launched, but in the wrong direction. This sent the satellites into highly elliptical, and seemingly useless orbits. At their low point, the satellites didn't really get a full view of earth.. Earth sensors, which enabled them to orient their navigation antennas - stopped working, because the earth just filled their field of view. At the other extreme, the satellites went too high, experiencing significant radiation exposure due to the van Allen belts. There was a threat, that they would just shut them off.. Okay, who do we have to talk to, to make sure they keep these satellites alive? They had an idea, for how to use them to make the best tests of general relativity to date; This was a strike of luck for us, we had been proposing such missions. When we saw that this accident happened, we were very happy about it, of course. Now, the satellites did have propellant on board, intended to allow for periodic course corrections over their planned 10 year lifespan. And they could use that fuel to attempt to correct their orbits. So they used the propellant on board - They did some of these maneuvers to bring them into stable orbit - But they didn't have enough to completely turn their elliptical orbits into circular ones. They couldn't circularize completely, thankfully for our project. According to general relativity, relative to a reference clock, clocks tick slower in stronger gravitational fields. That is to say, closer to large masses, like the Earth, deeper in gravitational wells, so, clocks in satellites should tick faster relative to those on Earth, because they're in weaker gravitational fields Here, I'm ignoring the special relativistic effect that works the other way - making clocks in satellites tick slower than those on Earth, because they're moving so much faster. This velocity effect is very well tested, so we focused on the gravitational parts. The gravitational effect is hard to measure precisely, for satellites in circular orbit, but satellites in elliptical orbit, have an advantage - - In every orbit - they go from their lowest position - perigee, to the highest position - apogee, and back. If you want to test the gravitational red-shift of a clock, you need two things - - you need a very accurate clock, and you need a large change in gravitational potential. The satellite goes from 17000 to 26000 kilometers. The difference in altitude is almost 9000 (!!!) kilometers, meaning they are rapidly, and repeatedly going from lower gravitational potential, to higher gravitational potential, and back. So clocks on board, should be ticking slower when they're closer to the Earth, and then faster when they go to their high point, and they'll keep oscillating back and forth; slower and faster relative to clocks on Earth. If you compare a clock on the ground, and a clock on the satellite, then you will have this variation of time.. Now, what's great about this, is it allows you to eliminate a lot of sources of error - because, you don't really care about the absolute accuracy of the clocks; All you want to know, is the difference between the rate of ticking at the low point compared to the high point. And since it's the same clock making the measurements at both locations, you can eliminate a lot of errors, like the noise in the clock, or a systematic drift, and that's what allows the scientists to achieve such incredible precision. Why we could do it - is because it's a very predictable effect. Due to the eccentricity of the orbit - the signal we were looking for, is really the modulation. All the other effects - that are at other periods - they will not have an influence on your measurements. Now, I should point out, that if you were traveling with the satellite, for you - time would not speed up and slow down; time would be passing at a constant rate. You wouldn't be able to measure any change in the rate the clock is ticking. The relativity comes when you compare two clocks which are distant enough to feel the curvature of space and time. The clocks on the satellites - there are a couple of different types - are all atomic clocks. The primary clock typically is a passive hydrogen MASER clock. A MASER - is just like a laser, except it uses microwaves. Atoms of hydrogen interact with one specific frequency of microwaves - A photon of precisely this frequency, will flip the spin of an electron. So by tuning the microwaves, so that they best interact with the hydrogen atoms, and then counting up exactly this number of cycles of that radiation, that's one second. You can keep track of time with incredible stability. In fact, over a 30 million years, a clock like this - would not be out by more than a second. Again, if you were traveling with the satellite, you would always observe the frequency of this radiation to be the same. But, if you sent this radiation out - - to a distant observer - who is not in a strong gravitational field, they would observe the frequency of your microwaves to be slightly lower than those from their hydrogen maser. In other words - red-shifted. And the closer the satellite is to Earth, the more red-shifted the microwaves would appear. And hence the slower time would pass, relative to that distant observer. Locally, you can not see any relativistic effect This is called the equivalence principle. It's only when you compare the satellite clock to one on Earth, that you would find the yo-yo-ing rate of the satellite's clock due to it's oscillation back and forth in Earth's gravitational well. This gravitational redshift was previously measured most precisely in 1976. That's right, for over 40 years, we haven't improved our measurement of the gravitational effect on time. In 1976, Gravity Probe A was launched aboard a sub-orbital rocket - it went up in a parabolic trajectory, reaching a maximum altitude of 10000 kilometers, and then it came down That gives you quite a lot of modulation and gravitational potential. The whole time it was in contact with the Earth, through the microwave signal of the on-board hydrogen maser. And then they did a direct frequency comparison, so they really did a two-way microwave link. This allowed for a direct comparison of the rate of which a clock would tick on a rocket, relative to a clock on Earth. The results matched the predictions of general relativity down to a 140 parts per million. The scientists I'm talking to were eventually able to convince those in charge of the satellites, to let them use their misfortune to test the gravitational redshift predictions of general relativity. But actually carrying out the tests, wasn't easy; one of the biggest sources of error was the positions of the satellites. You'd think, in the emptiness of space, the satellites would perfectly maintain their orbits. But that neglects the power of sunlight. The photons of the sun, bouncing on the satellites, is the biggest source of error. That's right, the momentum of photons hitting the satellites was enough to significantly impact the measurements. Careful modeling plus laser ranging to the satellites, brought the orbital uncertainties down to an acceptable level. One way to improve the statistics was by collecting data over more than a thousand days. That's almost 3 years Unlike Gravity Probe A, which spent only 2 hours in space So .. what did they find? I think that we both agree that we did not prove Relativity There isn't that we confirm the General Relativity Unfortunately They were able to reduce the uncertainty in the measurement by a factor of 5 over Gravity Probe A So it's a new high score the first in over 40 years But what is the point? You saying 'unfortunately' Yeah You know what we're looking for, is deviation from General Relativity. Because we know this is not the ultimate error. History has taught us that, new physics always lies at the boundaries. that more and more precise tests sometimes reveal brand new aspects of nature, that we never would've observed if we had not made efforts to look and there are good reasons to believe that General Relativity may not be the whole story Both it and Quantum Mechanics are spectacularly successful theories in their own rights But for nearly a century, all attempts to merge the two have been more or less failures. Plus our current world view includes dark energy and dark matter which make up more than 90% of everything there is in the universe. The fact that this is all down is not understood, tells me that maybe, we don't know everything about gravity already. When more tests are planned to further prove the General Relativity and determine if there's a test it can pass a cold cesium atom clock is set to fly in the international space station and it aims to reduce the deviation by a further factor of 10. As for the satellites, their orbits were made more circular using the propellants on board though they are still elliptical. The navigation signals have been tested and are within acceptable parameters. For the moment, they are restricted to 'test mode' awaiting some new software and modifications on the ground, but the hope is that they will be useful for navigation after all and in the meantime, they hold the record for achieving the best test yet of General Relativity Hey this episode of Veritasium was supported by viewers like you on Patreon and by audible and for viewers of this video, audible is offering a free audio book when you start a 30 day free trial. Just go to audible.com/veritasium or text veritasium to 500500. Now the book, I wanna recommend to you today is called 'Atomic Habits' by James Clear. We are approaching that time of year when everyone makes new year's resolutions and wants to change some big things about their lives. But what this books recommends, is actually making tiny changes consistently is the best way to achieve the long term changes that you wanna see in your life and I have found this book already, just a few chapters in umm, really effective in terms of changing my thinking about how I wanna change my life and the things I wanna get done So I highly recommend it and you can download it for free by going to audible.com/veritasium or text veritasium to 500500 but audible doesn't just have audio books they also have audio fitness programs and audible originals and every month, you can get 2 audible originals from a changing set of titles. Those are audio programs made specifically for audible members the way membership works, is that every month you get a credit which is good for one audio book and it also gives you exclusive access to those other fitness programs and to audible originals, so if you wanna check it out go try audible.com/veritasium I wanna thank you to audible for supporting me and I wanna thank you for watching
B1 中級 一般相対性理論の最高のテスト (2つの見当違い衛星による) (The Best Test of General Relativity (by 2 Misplaced Satellites)) 1 0 林宜悉 に公開 2021 年 01 月 14 日 シェア シェア 保存 報告 動画の中の単語