Soifyouwantedtoworkoutthe 1,000,000 Fibonaccinumber, whatyou'redoingismultiplyingbythegoldenratio a 1,000,000 times.
Solet's sayapproximatelyequaltogoldenratio, whichisthissymbolto a 1,000,000.
And I couldtellyouwhatitis.
I'veactuallyworkedthisout 4.4 times 10 andit's gonnabe a hugenumber.
208,987.
Sothisis a reallybigFibonaccinumber, butthisisanestimatebecauseitis a bitroughifyouwanttoseewhatitactuallyis.
Theactual 1,000,000 Fibonaccinumberis 1.95 times 10 tothepower 208,987.
They'resonotquitethere.
Butthesizeofthesenumbers, Thisspotonsoundsjust a littlerecapoff, Fibonacci.
Becausewhat I wanttodonowisrandomizethisRalphFibonacciweknoweverythingaboutitareboring.
Sopredictable.
Sonowlet's usemycointorandomizethis a littlebitwiththisideain a creativerandomFibonaccisequence, thenextoneisgoingtobethesumorthedifferenceofftheprevioustwonumbers.
And I'vegotdifferencedifferenceOkay, soit's northisthenextnight.
Zeroisthenextnumber.
Let's dothenextnumber, isit?
Giveme a sumordifference.
It's gonnabe a sum.
So I'vegotonenowattheprevioustwotogivemeone.
Let's seewhy.
Getnext.
Tryit, Whip.
Okay, I gotsome.
Sowegotbacktoanotheronethere.
Okay.
GotPlustwo.
Let's keepgoing.
Isthere a songor a difference?
Okay, nowgotdifferent.
Sowecandotominus 1 51 Let's do a fewmore.
GotPlusnow.
Sothat's goingtobe a 3 201 Oh, and a differencehere.
Sothreeminusoneis a too.
Soit's unpredictable.
I don't knowwhat's goingtohappennexton.
Ifyoudon't mind, I'm gonnareallymakethatpoint.
If I diditagain, I'm goingtoget a differentsequence.
Butisthereanything I cansayaboutthem?
So I don't knowifthesearegoingtogoofftoinfinityliketheFibonaccisequencejustgetsbiggerandbiggerbeergoesofftoinfinity.
I don't knowifhe's gonnamaybejustgoesofftominusinfinity.
I don't knowthat.
Maybeitkindofhoversaroundzero.
Maybetheplusesandminuses.
Canceloutormaybesunpredictablemajorschaotic.
And I don't knowwhat's goingtohappennext.
Sothesurprises.
I canmakesomepredictions.
I couldmakesomelongtermpredictions.
Forexample, I cantellyouwhatthemillionthrandomFibonaccinumberisgoingtobe A because, liketheoriginalFibonaccisequence, thereis a growthratiojustthesameway I wanttoshowyouthat.
Soit's onepoint 1319882487943 somethingsomething.
Something.
Okay, sothisis a constantandit's goingonforever, Whichmeanswecanusethistoprotectthe 1,000,000 randomnumber.
Solet's doit.
RandomFibonaccinumberonemillion.
Samekindofthing I didwiththeFibonaccinumbers.
It's gonnabeapproximatelythisconstant.
Oh, I'lljustdo 1.319 Yougettheideatothepoweronemillion, whichissomebignumber 8.3 times 10 tothe 53,841.
I willtellyouthisis a statementaboutthesizeofthenumber, notthesignofthenumber s.
Oh, I don't knowifit's a plusorminusnumber, soitmightbe a possibleminus.
Thisistendingtoourmagicnumberhere, 1.1319 ondhestuffasendtendstoinfinity, although, well, I'llput a littlethinghere.
Almostsurelythat's a funnyexpression I'veslippedin.
Thistendstothisconstantalmostsurely, becausetheoriginalFibonaccisequencewouldcountas a randomizedFibonaccisequenceif I wasjustgettingplus, everytime I fitmycoinplusplusplusplus, sothatcounts, andthathas a growthrate, whichisthegoldenratio.