初級 5375 タグ追加 保存
動画の字幕をクリックしてすぐ単語の意味を調べられます!
単語帳読み込み中…
字幕の修正報告
Have you ever noticed that it's harder to start pedaling your bicycle
than it is to ride at a constant speed?
Or wondered what causes your bicycle to move?
Or thought about why it goes forward instead of backwards or sideways?
Perhaps not, and you wouldn't be alone.
It wasn't until the 17th century
that Isaac Newton described the fundamental laws of motion
and we understood the answer to these three questions.
What Newton recognized was that things tend to keep on doing
what they are already doing. So when your bicycle is stopped,
it stays stopped, and when it is going,
it stays going.
Objects in motion tend to stay in motion
and objects at rest tend to stay at rest.
That's Newton's First Law.
Physicists call it the Law of Inertia, which is a fancy way of saying
that moving objects don't spontaneously speed up, slow down, or change direction.
It is this inertia that you must overcome to get your bicycle moving.
Now you know that you have to overcome inertia to get your bicycle moving,
but what is it that allows you to overcome it?
Well, the answer is explained by Newton's Second Law.
In mathematical terms, Newton's Second Law says
that force is the product of mass and acceleration.
To cause an object to accelerate, or speed up,
a force must be applied.
The more force you apply,
the quicker you accelerate. And the more mass your bicycle has,
and the more mass you have too,
the more force you have to use to accelerate at the same rate.
This is why it would be really difficult to pedal a 10,000 pound bicycle.
And it is this force, which is applied by your legs pushing down on the pedals,
that allows you to overcome Newton's Law of Inertia.
The harder you push down on the pedals, the bigger the force
and the quicker you accelerate.
Now on to the final question:
When you do get your bike moving,
why does it go forward?
According to Newton's Third Law, for every action,
there is an equal and opposite reaction.
To understand this, think about what happens when you drop a bouncy ball.
As the bouncy ball hits the floor,
it causes a downward force on the floor.
This is the action.
The floor reacts by pushing on the ball with the same force,
but in the opposite direction - upward -
causing it to bounce back up to you.
Together, the floor and the ball form what's called
the action/ reaction pair. When it comes to your bicycle,
it is a little more complicated. As your bicycle wheels spin
clockwise, the parts of each tire touching the ground
push backwards against the earth -
the actions. The ground pushes forward with the same force
against each of your tires - the reactions.
Since you have two bicycle tires, each one forms an action/ reaction pair
with the ground. And since the Earth is really really really big,
compared to your bicycle, it barely moves
from the forced caused by your bicycle tires pushing backwards -
but you are propelled forward.
コツ:単語をクリックしてすぐ意味を調べられます!

読み込み中…

【TED-Ed】Newton's 3 Laws, with a bicycle - Joshua Manley

5375 タグ追加 保存
阿多賓 2014 年 3 月 21 日 に公開
お勧め動画
  1. 1. クリック一つで単語を検索

    右側のスプリクトの単語をクリックするだけで即座に意味が検索できます。

  2. 2. リピート機能

    クリックするだけで同じフレーズを何回もリピート可能!

  3. 3. ショートカット

    キーボードショートカットを使うことによって勉強の効率を上げることが出来ます。

  4. 4. 字幕の表示/非表示

    日・英のボタンをクリックすることで自由に字幕のオンオフを切り替えられます。

  5. 5. 動画をブログ等でシェア

    コードを貼り付けてVoiceTubeの動画再生プレーヤーをブログ等でシェアすることが出来ます!

  6. 6. 全画面再生

    左側の矢印をクリックすることで全画面で再生できるようになります。

  1. クイズ付き動画

    リスニングクイズに挑戦!

  1. クリックしてメモを表示

  1. UrbanDictionary 俚語字典整合查詢。一般字典查詢不到你滿意的解譯,不妨使用「俚語字典」,或許會讓你有滿意的答案喔