中級 1589 タグ追加 保存
動画の字幕をクリックしてすぐ単語の意味を調べられます!
単語帳読み込み中…
字幕の修正報告
In 1997, in a game between France and Brazil,
a young Brazilian player named Roberto Carlos
set up for a 35 meter free kick.
With no direct line to the goal,
Carlos decided to attempt the seemingly impossible.
His kick sent the ball flying wide of the players,
but just before going out of bounds, it hooked to the left
and soared into the goal.
According to Newton's first law of motion,
an object will move in the same direction and velocity
until a force is applied on it.
When Carlos kicked the ball, he gave it direction and velocity,
but what force made the ball swerve
and score one of the most magnificent goals in the history of the sport?
The trick was in the spin.
Carlos placed his kick at the lower right corner of the ball,
sending it high and to the right, but also rotating around its axis.
The ball started its flight in an apparently direct route,
with air flowing on both sides and slowing it down.
On one side, the air moved in the opposite direction to the ball's spin,
causing increased pressure,
while on the other side, the air moved in the same direction as the spin,
creating an area of lower pressure.
That difference made the ball curve towards the lower pressure zone.
This phenomenon is called the Magnus effect.
This type of kick, often referred to as a banana kick,
is attempted regularly,
and it is one of the elements that makes the beautiful game beautiful.
But curving the ball with the precision needed
to both bend around the wall and back into the goal is difficult.
Too high and it soars over the goal.
Too low and it hits the ground before curving.
Too wide and it never reaches the goal.
Not wide enough and the defenders intercept it.
Too slow and it hooks too early, or not at all.
Too fast and it hooks too late.
The same physics make it possible
to score another apparently impossible goal,
an unassisted corner kick.
The Magnus effect was first documented by Sir Isaac Newton
after he noticed it while playing a game of tennis back in 1670.
It also applies to golf balls, frisbees and baseballs.
In every case, the same thing happens.
The ball's spin creates a pressure differential in the surrounding air flow
that curves it in the direction of the spin.
And here's a question.
Could you theoretically kick a ball hard enough
to make it boomerang all the way around back to you?
Sadly, no.
Even if the ball didn't disintegrate on impact,
or hit any obstacles,
as the air slowed it,
the angle of its deflection would increase,
causing it to spiral into smaller and smaller circles
until finally stopping.
And just to get that spiral,
you'd have to make the ball spin over 15 times faster
than Carlos's immortal kick.
So good luck with that.
コツ:単語をクリックしてすぐ意味を調べられます!

読み込み中…

【TED-Ed】Football physics: The "impossible" free kick - Erez Garty

1589 タグ追加 保存
稲葉白兎 2015 年 6 月 17 日 に公開
お勧め動画
  1. 1. クリック一つで単語を検索

    右側のスプリクトの単語をクリックするだけで即座に意味が検索できます。

  2. 2. リピート機能

    クリックするだけで同じフレーズを何回もリピート可能!

  3. 3. ショートカット

    キーボードショートカットを使うことによって勉強の効率を上げることが出来ます。

  4. 4. 字幕の表示/非表示

    日・英のボタンをクリックすることで自由に字幕のオンオフを切り替えられます。

  5. 5. 動画をブログ等でシェア

    コードを貼り付けてVoiceTubeの動画再生プレーヤーをブログ等でシェアすることが出来ます!

  6. 6. 全画面再生

    左側の矢印をクリックすることで全画面で再生できるようになります。

  1. クイズ付き動画

    リスニングクイズに挑戦!

  1. クリックしてメモを表示

  1. UrbanDictionary 俚語字典整合查詢。一般字典查詢不到你滿意的解譯,不妨使用「俚語字典」,或許會讓你有滿意的答案喔