Placeholder Image

字幕表 動画を再生する

  • In this video, I want to familiarize you

    この動画では、極限について学びます。これは非常に重要な考えです。

  • with the idea of a limit, which is a super important idea.

    実際、この考えは、全ての微積分の基礎となっています。

  • It's really the idea that all of calculus is based upon.

    ですが、その重要性とは裏腹に、実際はとてもとても単純な考えなのです。

  • But despite being so super important,

    では、関数を描かせてください。実際は関数を定義させてください。

  • it's actually a really, really, really, really, really, really

    やや単純な関数です。関数 f(x) = (x-1) / (x-1)

  • simple idea.

    きみはこう言うかもしれません。「サルさん、分母と分子が同じだよ。

  • So let me draw a function here, actually,

    なにかの数を、その数で割ってたら、それはイコール1になるよ。単に、f(x) = 1に出来ないの?」

  • let me define a function here, a kind of a simple function.

    私はこう答えるでしょう。うむ、きみはほとんど正しい。だけど、f(x) = 1と、この関数の違いは、

  • So let's define f of x, let's say that f of x

    これは、x = 1だったときに、未定義になるのです。なので、ちょっと描かせてください。なので、

  • is going to be x minus 1 over x minus 1.

    f(1)だったら、何が起きるかな? 分子は、 (1-1)を得るので、それは、ちょっと描かせてくださいね。

  • And you might say, hey, Sal look,

    分子は、0になるね。さらに、分母が(1-1)だと、こちらも0になります。

  • I have the same thing in the numerator and denominator.

    そして0を0で割ると、これは未定義になります。なので、これを単純化させて、f(x) = 1に出来るけど、

  • If I have something divided by itself,

    それだと、x はイコール1には出来ないという制約も必要になります。

  • that would just be equal to 1.

    これで、これとこっちは同値になります。両方とも1以外の値ならば、イコール1になるでしょう。

  • Can't I just simplify this to f of x equals 1?

    ただ、x = 1のときは未定義になります。こちらも未定義で、こちらも未定義。では、この関数をどうグラフにするでしょうか?

  • And I would say, well, you're almost true,

    グラフを描かせてください。これは、わがy = f(x)軸で、こっちは、わがx軸です。

  • the difference between f of x equals 1

    そして、ここが x = 1の点で、ここはx = -1、こっちは y = 1 で、こっちだと -1も描けるけど、

  • and this thing right over here, is that this thing can never

    この関数とは特に関連しないです。では、グラフを描かせてください。

  • equal-- this thing is undefined when x is equal to 1.

    この関数は本質的に、このグラフは1以外のあらゆる値は、f(x) = 1なので、こんな風になるでしょう。1は例外にして。

  • Because if you set, let me define it.

    1だとf(x)は未定義になりますので、ここを開けて小さな丸を描きます。これは未定義を意味します。

  • Let me write it over here, if you have f of,

    私たちは1だったときの関数は知りません。定義していないのです。

  • sorry not f of 0, if you have f of 1, what happens.

    この関数は、1だったときを語っていません。なので、文字通り、x=1は、未定義なのです。

  • In the numerator, we get 1 minus 1,

    これが関数のグラフです。再び、誰かが f(1) だと何と尋ねたら、

  • which is, let me just write it down, in the numerator,

    きみはこう答えるでしょう。「ここが関数定義だ。x = 1 だったら...おっ、待ってくれ。我が関数のここに穴がある。

  • you get 0.

    これは未定義だ」と。では、また描かせてください。これはちょっと重複するけど、再び描かせてくださいね。

  • And in the denominator, you get 1 minus 1, which is also 0.

    f(1) は、未定義です。ですが、もし関数が x = 1 に近づいている数だったらどうでしょうか?

  • And so anything divided by 0, including 0 divided by 0,

    そして今、これが極限の考えに触れようとしています。なので、xは1に近づいて近づいて...

  • this is undefined.

    関数が近づいていったらどうでしょうか? この時間全体に、近づいて近づいていったら?

  • So you can make the simplification.

    左側からでは、1にどれだけ近づいていっても、1、f(x) = 1にはなりません。

  • You can say that this is you the same thing as f of x is equal

    右側からでも同じです。きみはこう言うでしょう。

  • to 1, but you would have to add the constraint that x cannot be

    もっと例を出せば、きみもこの考えに馴染むでしょう。

  • equal to 1.

    limは、極限limitの短縮です。xが1に近づいていたら、f(x)はイコール、

  • Now this and this are equivalent,

    これは、1に信じがたいほど、無限に近づいていくけど、決して1にはならないのを意味します。

  • both of these are going to be equal to 1

    そして、私たちの関数はイコール1になります。これは、1にどんどん近づいています。

  • for all other X's other than one, but at x equals 1,

    これは実際には、時間全体で1になります。なので、この場合、f(x)の1に近づいている極限は、1だと言えるのです。

  • it becomes undefined.

    再び言いますが、これはとても奇妙な記法ですが、語っているのは単に、「見て、xが1に近づいていったら、

  • This is undefined and this one's undefined.

    関数は何になっていくの?」

  • So how would I graph this function.

    では、次はカーブの例をやりましょう。ここで基本の考えを得たように。

  • So let me graph it.

    関数f(x)があるとします。ですが、多様のために、こちらはg(x)と呼ばせてください。

  • So that, is my y is equal to f of x axis,

    g(x)は、イコール、ここでこのように定義できます。これは、xが2で無いなら、x^2と定義できます。

  • y is equal to f of x axis, and then this over here

    ですが、x = 2だったときは、1になります。再び、これは面白い関数です。

  • is my x-axis.

    見てのとおり、これは連続的ではなく、不連続です。ではグラフを描きましょう。

  • And then let's say this is the point x is equal to 1.

    ここが、わが y=f(x)軸で、こっちはわが x軸。ここが、x=1で、こっちがx=2。

  • This over here would be x is equal to negative 1.

    ここが -1で、ここが -2。つまり、x=2以外のすべてで、これはイコールx^2です。なので、そう描きましょう。

  • This is y is equal to 1, right up there I could do negative 1.

    これはパラボラ型になります。こんな風に...こんな見た目で...

  • but that matter much relative to this function right over here.

    まだマシな風にパラボラを描かせてください。こんな感じに。

  • And let me graph it.

    これは歴史上もっとも綺麗に描けたパラボラではありませんが、これでパラボラのように見えると期待します。

  • So it's essentially for any x other than 1 f

    これは対称になります。再び、描き直します。これは見た目が悪いです。

  • of x is going to be equal to 1.

    こっちの方がいいですね。OK。よし。これでいこう。

  • So it's going to be, look like this.

    これは、x^2のグラフですが、x = 2のときは、x^2になりません。なので再び、

  • It's going to look like this, except at 1.

    x = 2のときは、少しだけ不連続にする必要があります。なので、ここに穴を開けます。

  • At 1 f of x is undefined.

    なぜなら、x=2のときは、関数はイコール1だからです。

  • So I'm going to put a little bit of a gap right

    同じスケールでは行いません。f(x) = x^2グラフでは、これは4になりますが、ここは2です。

  • over here, the circle to signify that this function is not

    ここは1で、ここは3でしょう。なので、x=2だったら、この関数はイコール1になります。

  • defined.

    これは少し変な関数ですが、きみはこのような関数も定義できます。きみは好きなどんな関数も定義できるのですよ。

  • We don't know what this function equals at 1.

    注目。これは、xが2以外のときのf(x) = x^2のグラフです。

  • We never defined it.

    2のときは穴があります。なぜなら、"g(x)=x^2"は使えず、"g(x) = 1"の方を使うからです。

  • This definition of the function doesn't tell us

    この関数で、間違ってf(x)と言っていたら、それは謝ります。実際はg(x)のことです。

  • what to do with 1.

    g(x)=1を使っていたら、それは正確に2で、1へと落ちます。そして、この関数はx^2を続けます。

  • It's literally undefined, literally undefined

    ここでいくつかの問題があります。もし、g(2)を評価すると、

  • when x is equal to 1.

    こっちの定義を見て、OK、x=2のときは、こっちの方を使う。

  • So this is the function right over here.

    そして、これは=1と告げている。では、もう少し面白い質問をさせてください。

  • And so once again, if someone were to ask you what is f of 1,

    g(x)の2に近づいていく極限は何でしょう? 再び、奇妙な記法ですが、

  • you go, and let's say that even though this was a function

    これはとてもとても単純なことを尋ねているのです。これは、xが2にどんどん近づいていけば、

  • definition, you'd go, OK x is equal to 1,

    どんどん近づいた値を得る。そしてこれは、後の動画で見ますが、厳格な定義ではありません。

  • oh wait there's a gap in my function over here.

    xが2に近づけば近づくほど、g(x)の値はどうなるでしょうか? たとえば、1.9だったら、1.999なら、1.999999なら、

  • It is undefined.

    1.99999999なら、g(x)はどうなるでしょうか? もし、正の方向から進むならば、

  • So let me write it again.

    たとえば2.1だったら、g(2.1)はどうなるでしょうか? g(2.01)なら? g(2.001)なら?

  • It's kind of redundant, but I'll rewrite it f of 1 is undefined.

    2に近づけば近づくほど、値はどうなるでしょうか?

  • But what if I were to ask you, what

    グラフを描くことで、視覚的に見ることができます。gが2に近づけば近づくほど、

  • is the function approaching as x equals 1.

    グラフに従うならば、4の値に向かっていきます。

  • And now this is starting to touch on the idea of a limit.

    たとえ、関数がそちらになくてもです。関数が1に落ちたとしても、xが2に近づくg(x)の極限は

  • So as x gets closer and closer to 1.

    イコール4になります。きみは、電卓を使って調べることも出来るのですよ。

  • So as we get closer and closer x is

    私にやらせてください。これは面白いと思うからです。なので電卓を使って、

  • to 1, what is the function approaching.

    わが親愛なるTI-85で、これが私の電卓です。

  • Well, this entire time, the function,

    では、x=2に近づいていったら、どうなるでしょうか? 1.9だったら、x=1.9だと、

  • what's a getting closer and closer to.

    ここの上の節を使うので、1.9 ^ 2となり、答えの3.61を得るでしょう。

  • On the left hand side, no matter how close

    さらに2に近づいたらどうでしょうか? 1.99だったら、再び二乗したら、

  • you get to 1, as long as you're not at 1,

    答えは3.96でした。では、1.999を二乗したら?

  • you're actually at f of x is equal to 1.

    3.996の答えを得ました。我々の点に近づいて近づいていることに注意。

  • Over here from the right hand side, you get the same thing.

    ではとても近い、1.999999999999 ^2だと?

  • So you could say, and we'll get more and more

    正確に4でした。この電卓は小数点を丸めています。なぜなら、実際に得た値はとてもとてもとても4に近いからです。

  • familiar with this idea as we do more examples,

    そして、私たちはこれを正の方向からも行えます。

  • that the limit as x and L-I-M, short for limit,

    そして、それは下からやった時と同じになるでしょう。

  • as x approaches 1 of f of x is equal to, as we get closer,

    なので、 2.1 ^ 2をしたら、4.4の答えを得られます。

  • we can get unbelievably, we can get infinitely close to 1,

    では、少し先に進みましょう。

  • as long as we're not at 1.

    2.0001の二乗だと、これは2にとても近いですね。4にとても近くなりました。

  • And our function is going to be equal to 1,

    つまり、2に近い値であるほど、4の答えに近くなるのがわかります。

  • it's getting closer and closer and closer to 1.

    本題に戻ると、この数値的方法では、g(x)の両方から2に近づいてったら、

  • It's actually at 1 the entire time.

    たとえ、正確に2だったら、非継続なので関数はイコール1だったとしても、

  • So in this case, we could say the limit

    2に近づく極限では、4にどんどん近づいていくのです。

  • as x approaches 1 of f of x is 1.

  • So once again, it has very fancy notation, but it's just saying,

  • look what is a function approaching

  • as x gets closer and closer to 1.

  • Let me do another example where we're dealing with a curve,

  • just so that you have the general idea.

  • So let's say that I have the function

  • f of x, let me just for the sake of variety,

  • let me call it g of x.

  • Let's say that we have g of x is equal to,

  • I could define it this way, we could define it as x squared,

  • when x does not equal, I don't know when x does not equal 2.

  • And let's say that when x equals 2 it is equal to 1.

  • So once again, a kind of an interesting

  • function that, as you'll see, is not fully continuous,

  • it has a discontinuity.

  • Let me graph it.

  • So this is my y equals f of x axis,

  • this is my x-axis right over here.

  • Let me draw x equals 2, x, let's say this is x equals 1,

  • this is x equals 2, this is negative 1, this is negative 2.

  • And then let me draw, so everywhere except x equals 2,

  • it's equal to x squared.

  • So let me draw it like this.

  • So it's going to be a parabola, looks something like this,

  • let me draw a better version of the parabola.

  • So it'll look something like this.

  • Not the most beautifully drawn parabola

  • in the history of drawing parabolas,

  • but I think it'll give you the idea.

  • I think you know what a parabola looks like, hopefully.

  • It should be symmetric, let me redraw it

  • because that's kind of ugly.

  • And that's looking better.

  • OK, all right, there you go.

  • All right, now, this would be the graph of just x squared.

  • But this can't be.

  • It's not x squared when x is equal to 2.

  • So once again, when x is equal to 2,

  • we should have a little bit of a discontinuity here.

  • So I'll draw a gap right over there, because when x equals 2

  • the function is equal to 1.

  • When x is equal to 2, so let's say that,

  • and I'm not doing them on the same scale, but let's say that.

  • So this, on the graph of f of x is equal to x squared,

  • this would be 4, this would be 2, this would be 1,

  • this would be 3.

  • So when x is equal to 2, our function is equal to 1.

  • So this is a bit of a bizarre function,

  • but we can define it this way.

  • You can define a function however you like to define it.

  • And so notice, it's just like the graph of f

  • of x is equal to x squared, except when you get to 2,

  • it has this gap, because you don't

  • use the f of x is equal to x squared when x is equal to 2.

  • You use f of x-- or I should say g

  • of x-- you use g of x is equal to 1.

  • Have I been saying f of x?

  • I apologize for that.

  • You use g of x is equal to 1.

  • So then then at 2, just at 2, just exactly at 2,

  • it drops down to 1.

  • And then it keeps going along the function

  • g of x is equal to, or I should say, along the function

  • x squared.

  • So my question to you.

  • So there's a couple of things, if I

  • were to just evaluate the function g of 2.

  • Well, you'd look at this definition,

  • OK, when x equals 2, I use this situation right over here.

  • And it tells me, it's going to be equal to 1.

  • Let me ask a more interesting question.

  • Or perhaps a more interesting question.

  • What is the limit as x approaches 2 of g of x.

  • Once again, fancy notation, but it's asking something

  • pretty, pretty, pretty simple.

  • It's saying as x gets closer and closer to 2, as you get closer

  • and closer, and this isn't a rigorous definition,

  • we'll do that in future videos.

  • As x gets closer and closer to 2, what is g of x approaching?

  • So if you get to 1.9, and then 1.999, and then 1.999999,

  • and then 1.9999999, what is g of x approaching.

  • Or if you were to go from the positive direction.

  • If you were to say 2.1, what's g of 2.1,

  • what's g of 2.01, what's g of 2.001, what is that approaching

  • as we get closer and closer to it.

  • And you can see it visually just by drawing the graph.

  • As g gets closer and closer to 2,

  • and if we were to follow along the graph,

  • we see that we are approaching 4.

  • Even though that's not where the function is,

  • the function drops down to 1.

  • The limit of g of x as x approaches 2 is equal to 4.

  • And you could even do this numerically using a calculator,

  • and let me do that, because I think that will be interesting.

  • So let me get the calculator out,

  • let me get my trusty TI-85 out.

  • So here is my calculator, and you could numerically

  • say, OK, what's it going to approach

  • as you approach x equals 2.

  • So let's try 1.94, for x is equal to 1.9,

  • you would use this top clause right over here.

  • So you'd have 1.9 squared.

  • And so you get 3.61, well what if you get even closer to 2,

  • so 1.99, and once again, let me square that.

  • Well now I'm at 3.96.

  • What if I do 1.999, and I square that?

  • I'm going to have 3.996.

  • Notice I'm going closer, and closer,

  • and closer to our point.

  • And if I did, if I got really close,

  • 1.9999999999 squared, what am I going to get to.

  • It's not actually going to be exactly 4,

  • this calculator just rounded things up,

  • but going to get to a number really, really, really, really,

  • really, really, really, really, really close to 4.

  • And we can do something from the positive direction too.

  • And it actually has to be the same number

  • when we approach from the below what we're trying to approach,

  • and above what we're trying to approach.

  • So if we try to 2.1 squared, we get 4.4.

  • If we do 2.

  • let me go a couple of steps ahead,

  • 2.01, so this is much closer to 2 now, squared.

  • Now we are getting much closer to 4.

  • So the closer we get to 2, the closer

  • it seems like we're getting to 4.

  • So once again, that's a numeric way

  • of saying that the limit, as x approaches 2

  • from either direction of g of x, even though right at 2,

  • the function is equal to 1, because it's discontinuous.

  • The limit as we're approaching 2,

  • we're getting closer, and closer, and closer to 4.

In this video, I want to familiarize you

この動画では、極限について学びます。これは非常に重要な考えです。

字幕と単語

ワンタップで英和辞典検索 単語をクリックすると、意味が表示されます