Thatsummingallofthedigitsusedinthespellingof a numberandthencheckingifthatsumisdivisiblebythreetellsusanythingaboutthedayvisibilitybythreeoftheoriginalnumber?
Well, let's generalizethisandjustimagine a numberthathas, let's say, threedigits.
Thisworksforyouknow, a numberofwithanynumberofdigits, though, butlet's saythatthisisourthreedigitnumber.
ABC, where a isthehundredsdigit B isthetensDigitandseeistheunitsdigit.
Sowe'regoingtoneed 99 more A's, andweonlyhaveone B, butweneed 10.
Sothatmeanswe'regonnaneedninemorebees.
Wealreadyhave a C.
Sowedon't needtoaddanymoresees.
Thereyougo.
Thisrighthereisequaltothis.
Theactualamountrepresentedbytheoriginalnumber.
Oh, lookatthis.
Thisisveryinteresting.
99 a plusnine b.
Thispartoftheexpressionwillalwaysbeevenlydivisiblebythreenomatterhowmanydigitsareinthenumberthatyouwerechecking, everycoefficientinthispartwilljustbe a stringofnines, whichmeanseachterminitwillbedivisiblebythree.
Andifyouadd a bunchofgroupsofthreetoanotherbunchofgroupsofthreewell, whatyou'releftwithisjust a bunchofgroupsofthree.
Whatyou'releftwithis a sumthatisstilldivisiblebythree.
I wishthatwecould, buttheproblemisthatthisentiretrickreliesonthefactthatthelasttwodigitsofthenumberareallthatmatterbecausefourgoesinto 100 buteightdoesnot.
However, eightdoesgointo 1000 eighttimes 125 equals 1000.
Soif a numberendswiththreezeros, ormorweknowthatitisevenlydivisiblebyeightwillingtoworrythenaboutthelastthreedigitsofanynumbertocheckforthevisibilitybyeight.
Ifyou'rethinkingabout a numberthatdoesn't havethreedigits, that's only a twodigitnumber.
Well, that's fiveminus 50.15 minus 0.1 is a positive 4.9.
Westillhavethis 1/10 ABC.
Sothisexpressionrighthere, this 3rd 1 thatwe'vegotisequaltothisexpressionwhichisequaltothisexpressionthatweactuallyareusingtocheckforthevisibilitybyseven.
Youmightalreadyhave a bitof a senseofwhythisworksbecause 4.9 looksanawfullotlike 49 a numberthatisfamouslydivisiblebyseven.
Thisisprettyclearlymadeupof a partthatisalwaysgoingtobedivisibleBy 7 49 49 thingscouldbeputintogroupsofseven, andwe'regonnahave c timesmoreofthosegroups.
In 1933 TheodoreEdison, sonofThomasEdison, invented a puzzlethathecalledtheCallaBron 12 andwewentbacktotheoriginal, tookthemeasurementsandcreated a replicaofthecaliberon 12.