Andwehave a tendencytobelievethatlowdimensionalthingsareeasier, certainlyeasiertovisualizeandhighlymissionthingsthatmysterioussomekindofbuffalobecausesometimeshigh I dimensionalobjectsareeasierondhe.
A problemcanbesolvedbyliftingtheacademiciancomingdowntothedimension.
Sohere's anexample.
Inpointtothebeginningoftheslowredrawthreecircles R B threecircles, butdifferentsizesanddifferentpositions.
Let's saythey'realloverlapwithoneanother.
Youhavethreeofthemlarge, middleonsmallsizes.
Anypairofcircles, forexample, largeonmiddleintersectintwopointshere, here, andyoucanconnectthosetwopointsby a core.
Andifyoutake a topviewofthis, a bird's eyeviewthepicturethatyougetwelllooklikethis, youcanimaginethreekindofbubblelikespheresenteringeachotherrightonDhe.
Remember, theircentersareallonthesamehorizontalplaneatthesameheight, sothekindofverynicelyenteringeachothernow, clearly, ifyoutake a viewfromthetop, thosearecirculararcs, whichkindthemovelikethis.
Like a longvalueslikethatontheydie, alloftheminto a commondimpleinthemiddle, andinfact, thisis a bird's eyeview.
Thispictureinthatwas, thosethreecirclesaresupposedtobeactuallyspheresscenefromthetoponthosetwospheresmeetalongthatcircle, whichlookslike a linebecausewe'relookingatitstraightdownfromthetop.
Thosetwocirclesonthosetwocirclesmeet, andtheyallsortofmeatin a singlepoint.
Sobyliftingthetwomembersof a problemtothreedimensional, sothemorefreeambientspacewhereyoucanmovearoundmorefreelyandyoucansortofgoupanddown, yousimplifytheprogramandinfectedimprovementbecameeasierandobvious.
Infact, there's nomoreproblemcanjustseethisexperiencehas a veryniceapplication.
Thatmeansthathewas a smalltremor, probablymagnitude, I don't know, fourorfiveatthatdistanceandsoforth, andshewasverypuzzledbythisondhe.
Thiswasdonebecauseofthefoldingmechanism.
Youprobablyarefamiliarwithhow, in a thunderstormyousee a flashoflightningandafterwards, a littlelatethatyouheartherumbleofthunderflashfollowedbyrumbleon.
Oneofthewavesworksuslikethissaythatthispartisshakingonthatpartbecauseitexpands, compressesthenextpartofftheearthandthenbouncesbackbecauseEarthis a littleelasticon.
Sotheshakeishappeningin a directionperpendiculardirectionoftravel, where, asinthepreviouscase, hewasgoingalongdirection.
Sothat's calledthe S Waveonthe 1st 1 hasgot a P wave P primarysecondaryonasprimeondheonsecondaryindicate P wavetravelsfaster, andthat's kindofintuitiverateforsomethingasstrongandasrobustasEarth.
Probablythiskindofwaveismuchfasterandthisis a muchsoftermode.
So s wavetravelsslowerthespeedsoff p and s wavesvery a lot.
Dividedbysixkilometerstoarrive, it's wavetakes a littlelongerdistancedividedbythreekilometersapproximatelysothedifferencebetweenthemwillgiveyouthedelay.
Bytheway, anotherdigressionisthatheusuallythiswaveisslower, butittendstocarry a littlemoreenergyifyou'renearthecenter.
SoweareworninJapanwhenweweregrowingupthatwhenyoufeel a horizontalshake, youshouldbe a littlecareforyouwillbetakecover, gotosome a securegroundbecauseyoumightexpectin a fewseconds a bigverticalship.
Youshouldbepreparedforthis, butanyway, sotheruleofthumbiswhenyou're a fewthat P wavesarriveyourselfcountingonesecond, twoseconds, threeseconds.
Soinmycaselastyear I counted 67 So I estimatedthereweresixtimes 6 36 60 cents 42.
Soit's about 40 kilometersaway, and I lookedupatthedatabaseoffTheAmericanGeologicalSurveyonbingoatthereccenterwas a bittoo t eastofsample, say, andhewasexactlyat 40 kilometersfromhere.
Sothatworkswhileyou'recounting.
Areyoualsorunningforcover?
Know I wasn't becausehewas a smallshakeand I feltthathewasSamifromexperience.
Whatthisdoesisthatifyoumeasurethedelaybetweenthearrivalof P waveAn s waveatonelocation, youknowthedistancefromthatmeasuringthelocationtotheextentthereinkilometersaswe'vejustshown.
Sousuallywedon't getearthquakesfromabove, sowe I havetwochoices.
Yourmathematicallybutthenappliedmathematicsisnousuallyrejectthepointaboveyoushouldtakeaffectionwouldbe, thoughthat's we'vegot a shortfollowupvideotothisbonewhereProfessorTakiAdatalksaboutconesandchordsandallsortsofotherthingsrelatedtothis.