初級 25365 タグ追加 保存
動画の字幕をクリックしてすぐ単語の意味を調べられます!
単語帳読み込み中…
字幕の修正報告
How high can you count on your fingers?
It seems like a question with an obvious answer.
After all, most of us have ten fingers,
or to be more precise,
eight fingers and two thumbs.
This gives us a total of ten digits on our two hands,
which we use to count to ten.
It's no coincidence that the ten symbols we use in our modern numbering system
are called digits as well.
But that's not the only way to count.
In some places, it's customary to go up to twelve on just one hand.
How?
Well, each finger is divided into three sections,
and we have a natural pointer to indicate each one, the thumb.
That gives us an easy way to count to twelve on one hand.
And if we want to count higher,
we can use the digits on our other hand to keep track of each time we get to twelve,
up to five groups of twelve, or 60.
Better yet, let's use the sections on the second hand
to count twelve groups of twelve, up to 144.
That's a pretty big improvement,
but we can go higher by finding more countable parts on each hand.
For example, each finger has three sections and three creases
for a total of six things to count.
Now we're up to 24 on each hand,
and using our other hand to mark groups of 24
gets us all the way to 576.
Can we go any higher?
It looks like we've reached the limit of how many different finger parts
we can count with any precision.
So let's think of something different.
One of our greatest mathematical inventions
is the system of positional notation,
where the placement of symbols allows for different magnitudes of value,
as in the number 999.
Even though the same symbol is used three times,
each position indicates a different order of magnitude.
So we can use positional value on our fingers to beat our previous record.
Let's forget about finger sections for a moment
and look at the simplest case of having just two options per finger,
up and down.
This won't allow us to represent powers of ten,
but it's perfect for the counting system that uses powers of two,
otherwise known as binary.
In binary, each position has double the value of the previous one,
so we can assign our fingers values of one,
two,
four,
eight,
all the way up to 512.
And any positive integer, up to a certain limit,
can be expressed as a sum of these numbers.
For example, the number seven is 4+2+1.
so we can represent it by having just these three fingers raised.
Meanwhile, 250 is 128+64+32+16+8+2.
How high can we go now?
That would be the number with all ten fingers raised, or 1,023.
Is it possible to go even higher?
It depends on how dexterous you feel.
If you can bend each finger just halfway, that gives us three different states -
down,
half bent,
and raised.
Now, we can count using a base-three positional system,
up to 59,048.
And if you can bend your fingers into four different states or more,
you can get even higher.
That limit is up to you, and your own flexibility and ingenuity.
Even with our fingers in just two possible states,
we're already working pretty efficiently.
In fact, our computers are based on the same principle.
Each microchip consists of tiny electrical switches
that can be either on or off,
meaning that base-two is the default way they represent numbers.
And just as we can use this system to count past 1,000 using only our fingers,
computers can perform billions of operations
just by counting off 1's and 0's.
コツ:単語をクリックしてすぐ意味を調べられます!

読み込み中…

読み込み中…

【TED-Ed】指だけで数えられる最大の数は?(How high can you count on your fingers? (Spoiler: much higher than 10) - James Tanton)

25365 タグ追加 保存
wangjiechin 2017 年 5 月 29 日 に公開
お勧め動画

コメント

読み込み中…
  1. 1. クリック一つで単語を検索

    右側のスプリクトの単語をクリックするだけで即座に意味が検索できます。

  2. 2. リピート機能

    クリックするだけで同じフレーズを何回もリピート可能!

  3. 3. ショートカット

    キーボードショートカットを使うことによって勉強の効率を上げることが出来ます。

  4. 4. 字幕の表示/非表示

    日・英のボタンをクリックすることで自由に字幕のオンオフを切り替えられます。

  5. 5. 動画をブログ等でシェア

    コードを貼り付けてVoiceTubeの動画再生プレーヤーをブログ等でシェアすることが出来ます!

  6. 6. 全画面再生

    左側の矢印をクリックすることで全画面で再生できるようになります。

  1. クイズ付き動画

    リスニングクイズに挑戦!

  1. クリックしてメモを表示

  1. UrbanDictionary 俚語字典整合查詢。一般字典查詢不到你滿意的解譯,不妨使用「俚語字典」,或許會讓你有滿意的答案喔

ユーザー様への重要なお知らせ

この度、VoiceTube アプリは
2018 年 12 月 19 日(水)に
全面的にリニューアルを予定しております!

今までの学習機能を整合し、
誘導式メソッドによる、
プロの編集チームが制作したコンテンツで、
有効かつ効率的に英語を学べるようになります。

VoiceTube がさらに新しく!
ぜひお楽しみに!

VoiceTube ウェブ版一部機能について、アプリのリニューアルに伴い、
提供終了とさせていただくこととなりました。
詳細は次のリンクからご確認ください。

了解